對同一圖形,從不同的角度看就會有不同的發(fā)現(xiàn),請根據(jù)右圖解決以下問題:
(1)如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,分別以AB、AC所在的直線為對稱軸,作出△ABD、△ACD的軸對稱圖形,點D的對稱點分別為E、F,延長EB、FC相交于G點,試證明四邊形AEGF是正方形;
(2)如圖,在邊長為12cm的正方形AEFG中,點B是邊EG上一點,將邊AE、AF分別沿AB、AC向內(nèi)翻折至AD處,則點B、D、C在一條直線上,若EB=4cm,求△ABC的面積.

解:(1)∵AD⊥BC于D,
∴∠ADB=∠ADC=90°.
∵△ABE與△ABD關于AB對稱,△ACF與△ACD關于AC對稱,
∴AE=AF,∠E=∠F=90°,∠EAB=∠DAB,∠DAC=∠FAC.
∵∠BAD+∠CAD=45°,
∴∠BAE+∠FAC=45°,
∴∠BAD+∠CAD+∠BAE+∠FAC=90°,
∴四邊形AEGF是矩形,
∵AE=AF,
∴矩形AEGF是正方形.

(2)∵四邊形AEFG是正方形,
∴∠E=∠G=∠F=90°,AE=GE=GF=AF=12,
∵BE=4,
∴BG=8,
設CF=x,則BC=4+x,GC=12-x,
∴64+(12-x)2=(4+x)2,解得
x=6,
∴BC=10,
∴S△ABC=×10×12=60.
分析:(1)由軸對稱及已知條件可以得出∠E=∠F=∠EAF=90°AE=AF,再根據(jù)正方形的判定方法就可以得出四邊形AEGF是正方形.
(2)根據(jù)條件可以求出BG=8,BD=4,設出CF=x,則BC=4+x,GC=12-x,由勾股定理建立等量關系求出x的值,再利用三角形的面積公式就可以求出其值.
點評:本題是一道軸對稱問題的解答題,考查了三角形的面積,正方形的判定,軸對稱的性質(zhì),勾股定理的運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•青島)在前面的學習中,我們通過對同一面積的不同表達和比較,根據(jù)圖1和圖2發(fā)現(xiàn)并驗證了平方差公式和完全平方公式.
這種利用面積關系解決問題的方法,使抽象的數(shù)量關系因幾何直觀而形象化.

【研究速算】
提出問題:47×43,56×54,79×71,…是一些十位數(shù)字相同,且個位數(shù)字之和是10的兩個兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個正數(shù)的乘積,以47×43為例:
(1)畫長為47,寬為43的矩形,如圖3,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形上面.
(2)分析:原矩形面積可以有兩種不同的表達方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個位數(shù)字3與7的積,構成運算結果.
歸納提煉:
兩個十位數(shù)字相同,并且個位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個個位數(shù)字的積,構成運算結果
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個個位數(shù)字的積,構成運算結果

【研究方程】
提出問題:怎樣圖解一元二次方程x2+2x-35=0(x>0)?
幾何建模:
(1)變形:x(x+2)=35.
(2)畫四個長為x+2,寬為x的矩形,構造圖4
(3)分析:圖中的大正方形面積可以有兩種不同的表達方式,(x+x+2)2或四個長x+2,寬x的矩形面積之和,加上中間邊長為2的小正方形面積.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
歸納提煉:求關于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并注明相關線段的長)
【研究不等關系】
提出問題:怎樣運用矩形面積表示(y+3)(y+2)與2y+5的大小關系(其中y>0)?
幾何建模:
(1)畫長y+3,寬y+2的矩形,按圖5方式分割
(2)變形:2y+5=(y+3)+(y+2)
(3)分析:圖5中大矩形的面積可以表示為(y+3)(y+2);陰影部分面積可以表示為(y+3)×1,畫點部分部分的面積可表示為y+2,由圖形的部分與整體的關系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
歸納提煉:
當a>2,b>2時,表示ab與a+b的大小關系.
根據(jù)題意,設a=2+m,b=2+n(m>0,n>0),要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖并注明相關線段的長)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

對同一圖形,從不同的角度看就會有不同的發(fā)現(xiàn),請根據(jù)右圖解決以下問題:
(1)如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,分別以AB、AC所在的直線為對稱軸,作出△ABD、△ACD的軸對稱圖形,點D的對稱點分別為E、F,延長EB、FC相交于G點,試證明四邊形AEGF是正方形;
(2)如圖,在邊長為12cm的正方形AEFG中,點B是邊EG上一點,將邊AE、AF分別沿AB、AC向內(nèi)翻折至AD處,則點B、D、C在一條直線上,若EB=4cm,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(山東青島卷)數(shù)學(解析版) 題型:解答題

在前面的學習中,我們通過對同一面積的不同表達和比較,根據(jù)圖①和圖②發(fā)現(xiàn)并驗證了平方差公式和完全平方公式

這種利用面積關系解決問題的方法,使抽象的數(shù)量關系因集合直觀而形象化。

【研究速算】

提出問題:47×43,56×54,79×71,……是一些十位數(shù)字相同,且個位數(shù)字之和是10的兩個兩位數(shù)相乘的算式,是否可以找到一種速算方法?

幾何建模:

用矩形的面積表示兩個正數(shù)的乘積,以47×43為例:

(1)畫長為47,寬為43的矩形,如圖③,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形的上面。

(2)分析:原矩形面積可以有兩種不同的表達方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個位數(shù)字3與7的積,構成運算結果。

歸納提煉:

兩個十位數(shù)字相同,并且個位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)        .

【研究方程】

提出問題:怎么圖解一元二次方程

幾何建模:

(1)變形:

(2)畫四個長為,寬為的矩形,構造圖④

(3)分析:圖中的大正方形面積可以有兩種不同的表達方式,或四個長,寬的矩形之和,加上中間邊長為2的小正方形面積

即:

歸納提煉:求關于的一元二次方程的解

要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)

【研究不等關系】

提出問題:怎么運用矩形面積表示的大小關系(其中)?

幾何建模:

(1)畫長,寬的矩形,按圖⑤方式分割

(2)變形:

(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為,

畫點部分的面積可表示為,由圖形的部分與整體的關系可知:,即

歸納提煉:

,時,表示的大小關系

根據(jù)題意,設,要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省連云港市新海實驗中學九年級(上)第一次月考數(shù)學試卷(解析版) 題型:解答題

對同一圖形,從不同的角度看就會有不同的發(fā)現(xiàn),請根據(jù)右圖解決以下問題:
(1)如圖,△ABC中,已知∠BAC=45°,AD⊥BC于D,分別以AB、AC所在的直線為對稱軸,作出△ABD、△ACD的軸對稱圖形,點D的對稱點分別為E、F,延長EB、FC相交于G點,試證明四邊形AEGF是正方形;
(2)如圖,在邊長為12cm的正方形AEFG中,點B是邊EG上一點,將邊AE、AF分別沿AB、AC向內(nèi)翻折至AD處,則點B、D、C在一條直線上,若EB=4cm,求△ABC的面積.

查看答案和解析>>

同步練習冊答案