【題目】如圖,在中,,,,點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以的速度移動,點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以的速度移動.
(1)如果點(diǎn)、分別從、同時(shí)出發(fā),幾秒鐘后,的面積等于?
(2)在(1)中,的面積能否等于面積的一半?說明理由;
(3)幾秒后,點(diǎn),點(diǎn)相距?
【答案】(1)經(jīng)過或秒鐘,使的面積為.(2)的面積不能等于面積的一半;(3)秒或秒后,點(diǎn),點(diǎn)相距.
【解析】
(1)設(shè)經(jīng)過x秒鐘,使△PBQ的面積為8cm2,得到BP=6-x,BQ=2x,根據(jù)三角形的面積公式得出方程(6-x)×2x=8,求出即可;
(2)△ABC面積為36cm2,同(1)列方程解答即可;
(3)設(shè)t秒后,點(diǎn)P,點(diǎn)Q相距4cm,依題意得BP=6-t,BQ=2t,利用勾股定理列方程求解.
解:(1)設(shè)經(jīng)過秒鐘,使的面積為,
,,
,,
,
,.
答:經(jīng)過或秒鐘,使的面積為.
(2)由題意得,,
,
,
此方程無解,的面積不能等于面積的一半;
(3)設(shè)秒后,點(diǎn),點(diǎn)相距,由題意得:
,
整理得:,
解得:,,
答:秒或秒后,點(diǎn),點(diǎn)相距.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,先將一張邊長為4的正方形紙片ABCD沿著MN對折,然后,分別將C、D沿著折痕BF、AE對折,使得C、D兩點(diǎn)都落在折痕MN上的點(diǎn)O處,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一款落地?zé)舻臒糁?/span>AB垂直于水平地面MN,高度為1.6米,支架部分的形為開口向下的拋物線,其頂點(diǎn)C距燈柱AB的水平距離為0.8米,距地面的高度為2.4 米,燈罩頂端D距燈柱AB的水平距離為1.4米,則燈罩頂端D距地面的高度為______米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l與x軸,y軸分別交于A,B兩點(diǎn),且與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)C,若S△AOB=S△BOC=1,則k=( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,CB⊥AB,D為圓上一點(diǎn),且AD∥OC,連接CD,AC,BD,AC與BD交于點(diǎn)M.
(1)求證:CD為⊙O的切線;
(2)若CD=AD,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為cm,在AC,BC邊上各取一點(diǎn)E,F,使得AE=CF,連接AF,BE相交于點(diǎn)P.(1)則∠APB=______度;(2)當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動到點(diǎn)C時(shí),則動點(diǎn)P經(jīng)過的路徑長為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的周長是48cm, AE⊥BC,垂足為E,AF⊥CD,垂足為F,∠EAF=2∠C.
(1)求∠C的度數(shù);
(2)已知DF的長是關(guān)于x的方程x2-5x-a=0的一個(gè)根,求該方程的另一個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有A、B兩個(gè)黑布袋,A布袋中有四個(gè)除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字0,1,2,3,B布袋中有三個(gè)除標(biāo)號外完全相同的小球,小球上分別標(biāo)有數(shù)字0,1,2.小明先從A布袋中隨機(jī)取出一個(gè)小球,用m表示取出的球上標(biāo)有的數(shù)字,再從B布袋中隨機(jī)取出一個(gè)小球,用n表示取出的球上標(biāo)有的數(shù)字.
(1)若用(m,n)表示小明取球時(shí)m與n 的對應(yīng)值,請畫出樹狀圖并寫出(m,n)的所有取值;
(2)求關(guān)于x的一元二次方程有實(shí)數(shù)根的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在△ABC中,∠BAC=60°,BC=4,則△ABC面積的最大值是 .
(2)已知:△ABC,用無刻度的直尺和圓規(guī)求作△DBC,使∠BDC+∠A=180°,且BD=DC.(注:不寫作法,保留作圖痕跡,對圖中涉及到的點(diǎn)用字母進(jìn)行標(biāo)注,作出一個(gè)符合題意的三角形即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com