【題目】如圖,Rt△ABC的兩直角邊AC邊長(zhǎng)為4,BC邊長(zhǎng)為3,它的內(nèi)切圓為⊙O,⊙O與邊AB、BC、AC分別相切于點(diǎn)D、E、F,延長(zhǎng)CO交斜邊AB于點(diǎn)G.

(1)求⊙O的半徑長(zhǎng);

(2)求線段DG的長(zhǎng).

【答案】(1) 1;(2)

【解析】

(1)由勾股定理求AB,設(shè)⊙O的半徑為r,則r=(AC+BC-AB)求解;

(2)過(guò)GGP⊥AC,垂足為P,根據(jù)CG平分直角∠ACB可知△PCG為等腰直角三角形,設(shè)PG=PC=x,則CG=x,由(1)可知CO=r=,由Rt△AGP∽R(shí)t△ABC,利用相似比求x,由OG=CG-COOG,在Rt△ODG中,由勾股定理求DG.

試題解析(1)在Rt△ABC中,由勾股定理得AB==5,

∴☉O的半徑r=(AC+BC-AB)=(4+3-5)=1;

(2)過(guò)G作GP⊥AC垂足為P,設(shè)GP=x

由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,

∴GP=PC=x,

∵Rt△AGP∽R(shí)t△ABC,

=,解得x=,

即GP=,CG=,

∴OG=CG-CO=-=,

Rt△ODG中,DG==.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字,另一個(gè)可以自由旋轉(zhuǎn)的圓盤(pán),被分成面積相等的3個(gè)扇形區(qū)域,分別標(biāo)有數(shù)字(如圖).小穎和小亮想通過(guò)游戲來(lái)決定誰(shuí)代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一個(gè)人口袋中摸出一個(gè)小球,另一個(gè)人轉(zhuǎn)動(dòng)圓盤(pán),如果所摸球上的數(shù)字與圓盤(pán)上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去,否則小亮去.

⑴.用樹(shù)狀圖或列表法求出小穎參加比賽的概率;

⑵.你認(rèn)為該游戲公平嗎?請(qǐng)說(shuō)明理由;若不公平,請(qǐng)修改該游戲的規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點(diǎn),DF與對(duì)角線AC交于點(diǎn)M,過(guò)M作MECD于點(diǎn)E,1=2.

(1)若CE=1,求BC的長(zhǎng);

(2)求證:AM=DF+ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將兩個(gè)全等的直角三角形△ABD、△ACE拼在一起(圖(1)).令△ABD不動(dòng),

(1)若將△ACE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),連接DE,MDE的中點(diǎn),連接MB、MC(圖(2)),證明:MB=MC

(2)若將圖(1)中的CE向上平移,∠CAE不變,連接DEMDE的中點(diǎn),連接MB、MC(圖(3)),判斷MB、MC的數(shù)量關(guān)系,并說(shuō)明理由.

(3)在(2)中,若∠CAE的大小改變(圖(4)),其他條件不變,則(2)中的MB、MC的數(shù)量關(guān)系還成立嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,ADBC邊的中線,∠ADC=30°,將△ADC沿AD折疊,使C點(diǎn)落在C′的位置,BC=4,BC′的長(zhǎng)為 (  )

A. 2 B. 2 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,A0,a),Bb,0)且a、b滿足|a+2b6|+|a2b+2|0E為線段AB上一動(dòng)點(diǎn),∠BEDOAB,BDEC,垂足在EC的延長(zhǎng)線上,試求:

1)判斷△OAB的形狀,并說(shuō)明理由;

2)如圖1,當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),探究線段ACBD的數(shù)量關(guān)系,并證明你的結(jié)論;

3)如圖2,當(dāng)點(diǎn)E在線段AB(不與A、B重合)上運(yùn)動(dòng)時(shí),試探究線段ECBD的數(shù)量關(guān)系,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小紅駕車(chē)從甲地到乙地,她出發(fā)第xh時(shí)距離乙地ykm,已知小紅駕車(chē)中途休息了1小時(shí),圖中的折線表示她在整個(gè)駕車(chē)過(guò)程中yx之間的函數(shù)關(guān)系.

1B點(diǎn)的坐標(biāo)為(  ,  );

2)求線段AB所表示的yx之間的函數(shù)表達(dá)式;

3)小紅休息結(jié)束后,以60km/h的速度行駛,則點(diǎn)D表示的實(shí)際意義是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中,,,過(guò)頂點(diǎn)作射線.

1)當(dāng)射線外部時(shí),如圖①,點(diǎn)在射線上,連結(jié)、,已知,,.

①試證明是直角三角形;

②求線段的長(zhǎng).(用含的代數(shù)式表示)

2)當(dāng)射線內(nèi)部時(shí),如圖②,過(guò)點(diǎn)于點(diǎn),連結(jié),請(qǐng)寫(xiě)出線段、、的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小強(qiáng)騎自行車(chē)去郊游,右圖表示他離家的距離y(千米)與所用的時(shí)間x(小時(shí))之間關(guān)系的函數(shù)圖象,小強(qiáng)9點(diǎn)離開(kāi)家,15點(diǎn)回家,根據(jù)這個(gè)圖象,請(qǐng)你回答下列問(wèn)題:

1)小強(qiáng)到離家最遠(yuǎn)的地方需要幾小時(shí)?此時(shí)離家多遠(yuǎn)?

2)何時(shí)開(kāi)始第一次休息?休息時(shí)間多長(zhǎng)?

3)小強(qiáng)何時(shí)距家21km?(寫(xiě)出計(jì)算過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案