【題目】如圖AB是半圓O的直徑C、D是半圓O上的兩個點,D是弧BC的中點,ODBC交于點E,連接AC

(1)A=70°,CBD的度數(shù);

(2)DE=2,BC=6,求半圓O的半徑

【答案】(1)35°;(2)

【解析】

1)連接CO,根據(jù)圓周角定理可得∠COD=140°,則∠CBD的度數(shù)即可求得;
2)易證ODBC,設(shè)半圓O的半徑為x,利用勾股定理求得x,則半圓O的半徑即可求得.

1)連接CO

∵∠A=70°,∴∠COD2A=140°.

又∵D的中點,∴∠COD=70°.

∴∠CBDCOD=35°

2)∵COBO,∠COD=∠DOB,∴ODBC

又∵OD是半徑,∴CEBEBC

BC6,∴BE3

設(shè)半圓O的半徑為x,則OBODxOEx2,(x2232x2

解得x

即半圓O的半徑為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A-1,0),B1,4),C0,3).

(1)求出此二次函數(shù)的表達式,并把它化成的形式;

2)請在坐標系內(nèi)畫出這個函數(shù)的圖象,并根據(jù)圖象寫出函數(shù)值y為負數(shù)時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是反比例函數(shù)圖象第一象限上一點,過點A軸于B點,以AB為直徑的圓恰好與y軸相切,交反比例函數(shù)圖象于點C,在AB的左側(cè)半圓上有一動點D,連結(jié)CDAB于點的面積為,的面積為,連接BC,______三角形,若的值最大為1,則k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OAB與OCD是以點O為位似中心的位似圖形,相似比為3:4,∠OCD=90°,∠AOB=60°,若點B的坐標是(6,0),則點C的坐標是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A﹣10)、C0,3),與x軸交于另一點B,拋物線的頂點為D

1)求此二次函數(shù)解析式;

2)連接DCBC、DB,求證:△BCD是直角三角形;

3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形沿折疊,使點落在邊上的點處,點落在點處,已知,連接,則__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDAB相交,∠BAC=40°.

(1)如圖1,若D為弧AB的中點,求∠ABC和∠ABD的度數(shù);

(2)如圖2,過點D作⊙O的切線,與AB的延長線交于點P,若DPAC,求∠OCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ABC = 90°,BC = 1,AC =

1以點B為旋轉(zhuǎn)中心,將ABC沿逆時針方向旋轉(zhuǎn)90°得到ABC′,請畫出變換后的圖形;

2求點A和點A′之間的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)域為響應(yīng)“綠水青山就是金山銀山”的號召,加強了綠化建設(shè).為了解該區(qū)域群眾對綠化建設(shè)的滿意程度,某中學(xué)數(shù)學(xué)興趣小組在該區(qū)域的甲、乙兩個片區(qū)進行了調(diào)查,得到如下不完整統(tǒng)計圖.

請結(jié)合圖中信息,解決下列問題:

(1)此次調(diào)查中接受調(diào)查的人數(shù)為多少人,其中“非常滿意”的人數(shù)為多少人;

(2)興趣小組準備從“不滿意”的4位群眾中隨機選擇2位進行回訪,已知這4位群眾中有2位來自甲片區(qū),另2位來自乙片區(qū),請用畫樹狀圖或列表的方法求出選擇的群眾來自甲片區(qū)的概率.

查看答案和解析>>

同步練習(xí)冊答案