【題目】經(jīng)過頂點的一條直線,分別是直線上兩點,且

1)若直線經(jīng)過的內(nèi)部,且在射線上,請解決下面兩個問題:

如圖1,若,

; (填,);

如圖2,若,請?zhí)砑右粋關(guān)于關(guān)系的條件 ,使中的兩個結(jié)論仍然成立,并證明兩個結(jié)論成立.

2)如圖3,若直線經(jīng)過的外部,,請?zhí)岢?/span>三條線段數(shù)量關(guān)系的合理猜想(不要求證明).

【答案】1;

所填的條件是:

證明:在中,

,

,,

,

2

【解析】

1∠BCA=90°,∠α=90°可得∠CBE+∠BCE=90°,∠BCE+∠ACD=90°,可推得∠CBE=∠ACD,且已知CA=CB,∠BEC=∠CFA,所以△BEC≌△CDA,可得BE=CFEC=AF;又因為EF=CF-CE,所以EF=|BE-AF|;

只有滿足△BEC≌△CDA,才有中的結(jié)論,即∠BCE=∠CAF,∠CBE=∠FCA;由三角形內(nèi)角和等于180°,可知∠α+∠BCE+∠CBE=180°,即∠α+∠BCE+∠FCA=180°,即可得到∠α+∠BCA=180°

2)只要通過條件證明△BEC≌△CFA(可通過ASA證得),可得BE=CF,EC=AF,即可得到EF=EC+CF=BE+AF

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,點ECD上,點FAB上,連接AE、CF、DF、BE,∠DAE=∠BCF.

(1)如圖1,求證:四邊形DFBE是平行四邊形;

(2)如圖2,若ECD的中點,連接GH,在不添加任何輔助線的情況下,請直接寫出圖2中以GH為邊或以GH為對角線的所有平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本(單位:元)、銷售價(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.

1)請解釋圖中點D的橫坐標、縱坐標的實際意義;

2)求線段AB所表示的x之間的函數(shù)表達式;

3)當該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,電子螞蟻PQ在邊長為1個單位長度的正方形ABCD的邊上運動,電子螞蟻P從點A出發(fā),以個單位長度/秒的速度繞正方形作順時針運動,電子螞蟻Q從點A出發(fā),以個單位長度秒的速度繞正方形作逆時針運動,則它們第2019次相遇在( )

A. AB. BC. CD. D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=24厘米,BC=16厘米,點DAB的中點,點P在線段BC上以4厘米/秒的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.當點Q的運動速度為_______厘米/秒時,能夠在某一時刻使△BPD△CQP全等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的邊長為4,點是對角線的中點,點、分別在、邊上運動,且保持,連接,.在此運動過程中,下列結(jié)論:①;②;③四邊形的面積保持不變;④當時,,其中正確的結(jié)論是(

A.①②B.②③C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知D、E分別為ABC的邊ACBC的中點,AFABD的中線,連接EF,若四邊形AFEC的面積為15,且AB8,則ABCAB邊上高的長為(  )

A.3B.6C.9D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解“陽光體育”活動的開展情況,從全校2000名學生中,隨機抽取部分學生進行問卷調(diào)查(每名學生只能填寫一項自己喜歡的活動項目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)被調(diào)查的學生共有   人,并補全條形統(tǒng)計圖;

(2)在扇形統(tǒng)計圖中,m= ,n=   ,表示區(qū)域C的圓心角為  度;

(3)全校學生中喜歡籃球的人數(shù)大約有

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線CBOAC=OAB=120°,E、FCB上,且滿足FOB=AOB,OE平分COF.

1)求EOB的度數(shù).

2)若平行移動AB,那么OBCOFC的值是否隨之發(fā)生變化? 若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個比值.

3)在平行移動AB的過程中,是否存在某種情況,使OEC=OBA? 若存在,求出OBA的度數(shù);若不存在,說明理由.

查看答案和解析>>

同步練習冊答案