【題目】如圖1所示,ABCD,E為直線CD下方一點(diǎn),BF平分ABE

1)求證:ABE+∠CE180°

2)如圖2,EG平分BEC,過點(diǎn)BBHGE,求FBHC之間的數(shù)量關(guān)系.

3)如圖3,CN平分ECD,若BF的反向延長線和CN的反向延長線交于點(diǎn)M,且E+∠M130°,請直接寫出E的度數(shù).

【答案】1)見解析;(22∠FBH+∠C180°;(380°

【解析】

1)過點(diǎn)E,由平行線的性質(zhì)得出,進(jìn)而得出答案;

2)設(shè),由平行線的性質(zhì)得出,由(1)知,即可得出答案;

3)設(shè),由(1)知,過M,由平行線的性質(zhì)得出,求出,即可得出答案.

1)如圖1,過點(diǎn)E

;

2∵BF、EG分別平分、

設(shè)

由(1)知,

;

3∵CNBF分別平分、

設(shè)

由(1)知:

如圖3,過M

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下列證明過程,并在括號內(nèi)填上依據(jù).

如圖,點(diǎn)EAB上,點(diǎn)FCD上,∠1=∠2,∠B=∠C,求證ABCD

證明:∵∠1=∠2(已知),∠1=∠4   ),

∴∠2   (等量代換),

   BF   ),

∴∠3=∠      ).

又∵∠B=∠C(已知),

∴∠3=∠B   ),

ABCD   ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一組數(shù)據(jù)﹣1、4、﹣1、2下列結(jié)論不正確的是( )
A.平均數(shù)是1
B.眾數(shù)是-1
C.中位數(shù)是0.5
D.方差是3.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù) 的圖象與 軸交于 (1, 0), 兩點(diǎn),與 軸交于點(diǎn) ,其頂點(diǎn) 的坐標(biāo)為(-3, 2).

(1)求這二次函數(shù)的關(guān)系式;
(2)求 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是⊙ 的直徑, 是⊙ 的弦,過點(diǎn) 的切線交 的延長線于點(diǎn) ,且 .

(1)求 的度數(shù);
(2)若 =3,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E,F分別在邊AD,CD上,

1)若AB6,AECF,點(diǎn)EAD的中點(diǎn),連接AE,BF

如圖1,求證:BEBF3;

如圖2,連接AC,分別交AE,BFM,M,連接DM,DN,求四邊形BMDN的面積.

2)如圖3,過點(diǎn)DDHBE,垂足為H,連接CH,若∠DCH22.5°,則的值為   (直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰直角△ABC中,BCAC,∠ACB90°,將該三角形在直角坐標(biāo)系中放置.

1)如圖(1),過點(diǎn)AADx軸,當(dāng)B點(diǎn)為(0,1),C點(diǎn)為(30)時,求OD的長;

2)如圖(2),將斜邊頂點(diǎn)AB分別落在y軸上、x軸上,若A點(diǎn)為(0,1),B點(diǎn)為(4,0),求C點(diǎn)坐標(biāo);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2-2x+3的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

(1)求點(diǎn)A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N,若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PMNQ的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ,過拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若, 求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案