【題目】如圖,在ABC中,BAC=90°,BE平分∠ABC,AM⊥BC于點(diǎn)M,交BE于點(diǎn)G,AD平分MAC,交BC于點(diǎn)D,交BE于點(diǎn)F.

(1)判斷直線BE與線段AD之間的關(guān)系,并說明理由;

(2)若C=30°,圖中是否存在等邊三角形?若存在,請寫出來并證明;若不存在,請說明理由.

【答案】(1)BE垂直平分AD,理由見解析;(2)存在,△ABD、△GAE是等邊三角形.

【解析】

(1)根據(jù)余角的性質(zhì)即可得到∠5=∠C;由AD平分∠MAC,得到∠3=∠4,根據(jù)三角形的外角的性質(zhì)得到∠BAD=∠ADB,推出△BAD是等腰三角形,于是得到結(jié)論.

(2)根據(jù)∠5=∠C=30°,AM⊥BC,可得∠ABD=60°,∠CAM=60°,進(jìn)而得到∠ADB=∠4+∠C=60°,∠BAD=60°,依據(jù)∠ABD=∠BDA=∠BAD,可得△ABD是等邊三角形;根據(jù)∠AEG=∠AGE=∠GAE,即可得到△AEG是等邊三角形.

解:(1)BE垂直平分AD,理由:

∵AM⊥BC,

∴∠ABC+∠5=90°,

∵∠BAC=90°,

∴∠ABC+∠C=90°,

∴∠5=∠C;

∵AD平分∠MAC,

∴∠3=∠4,

∵∠BAD=∠5+∠3,∠ADB=∠C+∠4,∠5=∠C,

∴∠BAD=∠ADB,

∴△BAD是等腰三角形,

∵∠1=∠2,

∴BE垂直平分AD;

(2)△ABD、△GAE是等邊三角形.理由:

∵∠5=∠C=30°,AM⊥BC,

∴∠ABD=60°,

∵∠BAC=90°,

∴∠CAM=60°,

∵AD平分∠CAM,

∴∠4=∠CAM=30°,

∴∠ADB=∠4+∠C=60°,

∴∠BAD=60°,

∴∠ABD=∠BDA=∠BAD,

∴△ABD是等邊三角形;

Rt△BGM中,∠BGM=60°=∠AGE,

Rt△ACM中,∠CAM=60°,

∴∠AEG=∠AGE=∠GAE,

∴△AEG是等邊三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一直線與兩坐標(biāo)軸的正半軸分別交于A,B兩點(diǎn),P是線段AB上任意一點(diǎn)(不包括端點(diǎn)),過P分別作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形的周長為10,則該直線的函數(shù)表達(dá)式是( )
A.y=x+5
B.y=x+10
C.y=﹣x+5
D.y=﹣x+10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四點(diǎn)A,B,C,D,用圓規(guī)和無刻度的直尺按下列要求與步驟畫出圖形并計算:

(1)畫直線AB;

(2)畫射線DC;

(3)延長線段DA至點(diǎn)E,使AE=AB;(保留作圖痕跡)

(4)畫一點(diǎn)P,使點(diǎn)P既在直線AB上,又在線段CE上;

(5)AB=2cm,AD=1cm,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩地相距80km,甲、乙兩人騎車分別從A,B兩地同時相向而行,他們都保持勻速行駛.如圖,l1,l2分別表示甲、乙兩人離B地的距離y(km)與騎車時間x(h)的函數(shù)關(guān)系.根據(jù)圖象得出的下列結(jié)論,正確的個數(shù)是(  )

甲騎車速度為30km/小時,乙的速度為20km/小時;

②l1的函數(shù)表達(dá)式為y=80﹣30x;

③l2的函數(shù)表達(dá)式為y=20x;

小時后兩人相遇.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某港口P位于東西方向的海岸線上,A、B兩艘輪船同時從港口P出發(fā),各自沿一固定方向航行,A輪船每小時航行12海里,B輪船每小時航行16海里.它們離開港口一個半小時后分別位于點(diǎn)R、Q處,且相距30海里.已知B輪船沿北偏東60°方向航行.

(1)A輪船沿哪個方向航行?請說明理由;

(2)請求出此時A輪船到海岸線的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一廣告墻PQ旁有兩根直立的木桿AB和CD , 某一時刻在太陽光下,木桿CD的影子剛好不落在廣告墻PQ上,

(1)你在圖中畫出此時的太陽光線CE及木桿AB的影子BF;
(2)若AB=6米,CD=3米 , CD到PQ的距離DQ的長為4米,求此時木桿AB的影長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在正方形 ABCD ,點(diǎn) E 是對角線 BD 上一動點(diǎn),AE 的延長線交 CD 于點(diǎn) F, BC 的延長線于點(diǎn) G,M FG 的中點(diǎn).

(1)求證DAE=DCE;

(2)判斷線段 CE CM 的位置關(guān)系,并證明你的結(jié)論;

(3)當(dāng)并且恰好是等腰三角形時, DE 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實(shí)數(shù)a,b,c滿足a>b>c(ac<0),且|c|<|b|<|a|,則|x-a|+|x+b|+|x-c|的最小值為(

A. B. |b| C. a+b D. -c-a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小東用長為3.2m的竹竿做測量工具測量學(xué)校旗桿的高度,移動竹竿,使竹竿、旗桿頂端的影子恰好落在地面的同一點(diǎn).此時,竹竿與這一點(diǎn)相距8m,與旗桿相距22m,則旗桿的高為( 。
A.12m
B.10m
C.8m
D.7m

查看答案和解析>>

同步練習(xí)冊答案