【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為對角線OB的中點,點E(4,n)在邊AB上,反比例函數(shù)(k≠0)在第一象限內(nèi)的圖象經(jīng)過點D、E,且tan∠BOA=.
(1)求邊AB的長;
(2)求反比例函數(shù)的解析式和n的值;
(3)若反比例函數(shù)的圖象與矩形的邊BC交于點F,將矩形折疊,使點O與點F重合,折痕分別與x、y軸正半軸交于點H、G,求線段OG的長.
【答案】(1)2
y=,n=;
OG=.
【解析】(1)∵點E(4,n)在邊AB上,
∴OA=4,
在Rt△AOB中,∵tan∠BOA=,
∴AB=OA×tan∠BOA=4×=2;
(2)根據(jù)(1),可得點B的坐標為(4,2),
∵點D為OB的中點,
∴點D(2,1)
∴=1,
解得k=2,
∴反比例函數(shù)解析式為y=,
又∵點E(4,n)在反比例函數(shù)圖象上,
∴=n,
解得n=;
(3)如圖,設(shè)點F(a,2),
∵反比例函數(shù)的圖象與矩形的邊BC交于點F,
∴=2,
解得a=1,
∴CF=1,
連接FG,設(shè)OG=t,則OG=FG=t,CG=2﹣t,
在Rt△CGF中,GF2=CF2+CG2,
即t2=(2﹣t)2+12,
解得t=,
∴OG=t=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點A旋轉(zhuǎn)至△ADE的位置,使點E落在BC邊上,則對于結(jié)論:①DE=BC;②∠EAC=∠DAB;③EA平分∠DEC;④若DE∥AC,則∠DEB=60°;其中正確結(jié)論的個數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】成都市空氣質(zhì)量整治領(lǐng)導(dǎo)小組近期提出“保護好環(huán)境,拒絕冒黑煙”.某公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買型和型兩種環(huán)保節(jié)能的公交車10輛.若購買型公交車1輛,型公交車2輛,共需400萬元;若購買型公交車2輛,型公交車1輛,共需350萬元.
(1)求購買型和型公交車每輛各需多少萬元?
(2)預(yù)計在該線路上型和型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買型和型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車在某次行駛過程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關(guān)系,其部分圖象如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫定義域)
(2)已知當油箱中的剩余油量為8升時,該汽車會開始提示加油,在此次行駛過程中,行駛了500千米時,司機發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開往該加油站的途中,汽車開始提示加油,這時離加油站的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時)與所用時間t(小時)的函數(shù)關(guān)系如圖所示,其中60≤v≤120.
(1)直接寫出v與t的函數(shù)關(guān)系式;
(2)若一輛貨車同時從乙地出發(fā)前往甲地,客車比貨車平均每小時多行駛20千米,3小時后兩車相遇.
①求兩車的平均速度;
②甲、乙兩地間有兩個加油站A、B,它們相距200千米,當客車進入B加油站時,貨車恰好進入A加油站(兩車加油的時間忽略不計),求甲地與B加油站的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC和△ADE中,∠BAC=∠EAD,AB=AC,AD=AE,連接CD、AE交于點F.
(1)求證:BE=CD.
(2)當∠BAC=∠EAD=30°,AD⊥AB時(如圖2),延長DC、AB交于點G,請直接寫出圖中除△ABC、△ADE以外的等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點(2,1)和(0,﹣2).
(1)求出該函數(shù)圖象與x軸的交點坐標;
(2)判斷點(﹣4,6)是否在該函數(shù)圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知,,,是線段上的一個動點,作直線,過點作交軸于點,若,設(shè)點、在直線上,則為( )
A.2B.C.3D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的切線,切點為B,OA交⊙O于點C,且AC=OC.
(1)求弧BC的度數(shù);
(2)設(shè)⊙O的半徑為5,求圖中陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com