【題目】下列計(jì)算中,結(jié)果正確的是( )
A.(a﹣b)2=a2﹣b2
B.(﹣2)3=8
C.
D.6a2÷2a2=3a2
【答案】C
【解析】解:A、(a﹣b)2=a2﹣b2 , 計(jì)算錯(cuò)誤,應(yīng)為a2+b2﹣2ab; B、(﹣2)3=8,計(jì)算錯(cuò)誤,應(yīng)為﹣8;
C、 =3,計(jì)算正確;
D、6a2÷2a2=3a2 , 計(jì)算錯(cuò)誤,應(yīng)為3;
故選:C.
【考點(diǎn)精析】通過靈活運(yùn)用整數(shù)指數(shù)冪的運(yùn)算性質(zhì)和有理數(shù)的乘方,掌握aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));有理數(shù)乘方的法則:1、正數(shù)的任何次冪都是正數(shù)2、負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí): (-a)n=-an或(a -b)n=-(b-a)n , 當(dāng)n為正偶數(shù)時(shí): (-a)n =an 或 (a-b)n=(b-a)n即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在目前的八年級數(shù)學(xué)下冊第二章《一元二次方程》中新增了一節(jié)選學(xué)內(nèi)容,其中有這樣的知識點(diǎn):如果方程ax2+bx+c=0(a≠0)的兩根是x1、x2 , 那么x1+x2=﹣ ,x1x2= ,則若關(guān)于x的方程x2﹣(k﹣1)x+k+1=0的兩個(gè)實(shí)數(shù)根滿足關(guān)系式|x1﹣x2|= ,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC向右平移3個(gè)單位長度,然后再向上平移2個(gè)單位長度,可以得到△A1B1C1 .
(1)畫出平移后的△A1B1C1;
(2)寫出△A1B1C1三個(gè)頂點(diǎn)的坐標(biāo);
(3)已知點(diǎn)P在x軸上,以A1、B1、P為頂點(diǎn)的三角形面積為4,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別是∠ABC、∠BCD的角平分線,則圖中的等腰三角形有( )
A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若方程(a-b)x2+(b-c)x+(c-a)=0是關(guān)于x的一元二次方程,則必有( 。
A.a=b=c
B.一根為1
C.一根為-1
D.以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+ax+b=0有一個(gè)非零根-b , 則a-b的值為( 。
A.1
B.-1
C.0
D.-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=1,AC=2,現(xiàn)將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△A′B′C′ , 連接AB′,并有AB′=3,則∠A′的度數(shù)為( 。
A.125°
B.130°
C.135°
D.140°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com