【題目】綜合與探究
如圖,拋物線經過點A(-2,0),B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設點D的橫坐標為.連接AC,BC,DB,DC,
(1)求拋物線的函數表達式;
(2)△BCD的面積等于△AOC的面積的時,求的值;
(3)在(2)的條件下,若點M是軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.
【答案】(1);(2)3;(3).
【解析】
(1)利用待定系數法進行求解即可;
(2)作直線DE⊥軸于點E,交BC于點G,作CF⊥DE,垂足為F,先求出S△OAC=6,再根據S△BCD=S△AOC,得到S△BCD =,然后求出BC的解析式為,則可得點G的坐標為,由此可得,再根據S△BCD=S△CDG+S△BDG=,可得關于m的方程,解方程即可求得答案;
(3)存在,如下圖所示,以BD為邊或者以BD為對角線進行平行四邊形的構圖,以BD為邊時,有3種情況,由點D的坐標可得點N點縱坐標為±,然后分點N的縱坐標為和點N的縱坐標為兩種情況分別求解;以BD為對角線時,有1種情況,此時N1點與N2點重合,根據平行四邊形的對邊平行且相等可求得BM1=N1D=4,繼而求得OM1= 8,由此即可求得答案.
(1)拋物線經過點A(-2,0),B(4,0),
∴,
解得,
∴拋物線的函數表達式為;
(2)作直線DE⊥軸于點E,交BC于點G,作CF⊥DE,垂足為F,
∵點A的坐標為(-2,0),∴OA=2,
由,得,∴點C的坐標為(0,6),∴OC=6,
∴S△OAC=,
∵S△BCD=S△AOC,
∴S△BCD =,
設直線BC的函數表達式為,
由B,C兩點的坐標得,解得,
∴直線BC的函數表達式為,
∴點G的坐標為,
∴,
∵點B的坐標為(4,0),∴OB=4,
∵S△BCD=S△CDG+S△BDG=,
∴S△BCD =,
∴,
解得(舍),,
∴的值為3;
(3)存在,如下圖所示,以BD為邊或者以BD為對角線進行平行四邊形的構圖,
以BD為邊時,有3種情況,
∵D點坐標為,∴點N點縱坐標為±,
當點N的縱坐標為時,如點N2,
此時,解得:(舍),
∴,∴;
當點N的縱坐標為時,如點N3,N4,
此時,解得:
∴,,
∴,;
以BD為對角線時,有1種情況,此時N1點與N2點重合,
∵,D(3,),
∴N1D=4,
∴BM1=N1D=4,
∴OM1=OB+BM1=8,
∴M1(8,0),
綜上,點M的坐標為:.
科目:初中數學 來源: 題型:
【題目】如圖,在東西方向的海岸線兩艘船,均收到已觸礁擱淺的船的求救信號,已知船在船的北偏東58°方向,船在船的北偏西35°方向,且的距離為30海里.觀察圖形并回答問題:(參考數據:,,,,,)
(1)求船到海岸線的距離(精確到0.1海里);
(2)若船、船分別以20海里/小時、15海里/小時的速度同時出發(fā),勻速直線前往救援,試通過計算判斷哪艘船先到達船處.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數的圖象交坐標軸于A(﹣1,0),B(4,0),C(0,﹣4)三點,點P是直線BC下方拋物線上一動點.
(1)求這個二次函數的解析式;
(2)是否存在點P,使△POC是以OC為底邊的等腰三角形?若存在,求出P點坐標;若不存在,請說明理由;
(3)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標和△PBC的最大面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=(x>0)的圖象經過矩形OABC對角線的交點M,分別與AB、BC相交于點D、E.若四邊形ODBE的面積為9,則k的值為( )
A. 3B. 6C. 9D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某條道路上通行車輛限速60千米/時,道路的AB段為監(jiān)測區(qū),監(jiān)測點P到AB的距離PH為50米(如圖).已知點P在點A的北偏東45°方向上,且在點B的北偏西60°方向上,點B在點A的北偏東75°方向上,那么車輛通過AB段的時間在多少秒以內,可認定為超速?(參考數據:≈1.7,≈1.4).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在△ABC中,點P為BC邊上一點,設BP=x,AP2=y,已知y是x的二次函數的一部分,其圖象如圖2,點Q(2,12)是圖象上的最低點,且圖象與y軸交于(0,16).
(1)求y關于x的函數解析式;
(2)當△ABP為直角三角形時,BP的值是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com