【題目】計算:

1

2

3

4(用公式計算)

【答案】1a8;(2x2-4x+4-y2;(33a2-2a;(41

【解析】

1)先算乘方,再算乘法,最后算加法即可;

2)按照平方差公式計算即可;

3)先根據(jù)完全平方公式和多項式乘多項式的運算法則展開,再合并同類項即可;

4)把2013×2015變成(2014-1)(2014+1),再利用平方差公式計算即可.

1)原式=-8a8+9a8=a8;

2)原式=[x-2+y][x-2-y]=x-22-y2=x2-4x+4-y2

3)原式=a2-4a+4+2(a2+2a-a-2)=a2-4a+4+2a2+2a-4=3a2-2a;

4)原式=20142-2014-1)(2014+1=20142-20142-1=20142-20142+1=1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在矩形ABCD中,對角線ACBD相交于點O,過點O作直線EFBD,且交AD于點E,交BC于點F,連接BE,DF,且BE平分∠ABD

①求證:四邊形BFDE是菱形;

②直接寫出∠EBF的度數(shù).

2)把(1)中菱形BFDE進行分離研究,如圖2,GI分別在BF,BE邊上,且BGBI,連接GD,HGD的中點,連接FH,并延長FHED于點J,連接IJ,IH,IF,IG.試探究線段IHFH之間滿足的關(guān)系,并說明理由;

3)把(1)中矩形ABCD進行特殊化探究,如圖3,矩形ABCD滿足ABAD時,點E是對角線AC上一點,連接DE,作EFDE,垂足為點E,交AB于點F,連接DF,交AC于點G.請直接寫出線段AGGE,EC三者之間滿足的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=2,∠5=6,∠3=4,試說明AEBD,ADBC.請完成下列證明過程.

證明:

∵∠5=6,

ABCE(  )

∴∠3=__________

∵∠3=4,

∴∠4=BDC(  )

    BD(  ),

∴∠2=    (  )

∵∠1=2,

∴∠1=______,

ADBC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,對角線AC、BD相交于點O,給出下列四組條件:①AB∥CD,AD∥BC②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判斷這個四邊形是平行四邊形的條件共有

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,D是AC中點,BE平分∠ABD交AC于點E,點O是AB上一點,⊙O過B、E兩點,交BD于點G,交AB于點F.

(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;
(2)當BD=6,AB=10時,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABC的邊長為3,點A、C分別在x軸,y軸的正半軸上,點D1,0)在OA上,POB上一動點,則PA+PD的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,CDAB邊上高,若AD=16,CD=12,BD=9

1)求ABC的周長;

2)判斷ABC的形狀并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,ABBCCA∠A∠ABC∠ACB,在△ABC的頂點A,C處各有一只小螞蟻,它們同時出發(fā),分別以相同速度由AB和由CA爬行,經(jīng)過ts)后,它們分別爬行到了D,E處,設(shè)DCBE的交點為F

1△ACD≌△CBE嗎?為什么?

2)小螞蟻在爬行過程中,DCBE所成的∠BFC的大小有無變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了保護環(huán)境,某公交公司決定購買A、B兩種型號的全新混合動力公交車共10輛,其中A種型號每輛價格為a萬元,每年節(jié)省油量為萬升;B種型號每輛價格為b萬元,每年節(jié)省油量為萬升:經(jīng)調(diào)查,購買一輛A型車比購買一輛B型車多20萬元,購買2A型車比購買3B型車少60萬元.

請求出ab

若購買這批混合動力公交車每年能節(jié)省萬升汽油,求購買這批混合動力公交車需要多少萬元?

【答案】1;(2)購買這批混合動力公交車需要1040萬元.

【解析】

(1)根據(jù)“購買一臺A型車比購買一臺B型車多20萬元,購買2A型車比購買3B型車少60萬元.”即可列出關(guān)于a、b的二元一次方程組,解之即可得出結(jié)論;

(2)設(shè)A型車購買x臺,B型車購買y臺,根據(jù)總節(jié)油量=2.4×A型車購買的數(shù)量+2.2×B型車購買的數(shù)量、A型車數(shù)量+B型車數(shù)量=10得出方程組,解之求得xy的值,再根據(jù)總費用=120×A型車購買的數(shù)量+100×B型車購買的數(shù)量即可算出購買這批混合動力公交車的總費用.

解:根據(jù)題意得:,

解得:;

設(shè)A型車購買x臺,B型車購買y臺,

根據(jù)題意得:

解得:,

萬元

答:購買這批混合動力公交車需要1040萬元.

【點睛】

本題考查了二元一次方程組的應用,根據(jù)題意找出等量關(guān)系列出方程組是解題的關(guān)鍵.

型】解答
結(jié)束】
16

【題目】在邊長為1的正方形網(wǎng)格中

作出關(guān)于直線MN對稱的;

經(jīng)過圖形平移得到,當點A的坐標是時,請建立適當?shù)闹苯亲鴺讼,分別寫出點,的坐標.

查看答案和解析>>

同步練習冊答案