【題目】如圖,CB切⊙O于點B,CA交⊙O于點D且AB為⊙O的直徑,點E是 上異于點A、D的一點.若∠C=40°,則∠E的度數(shù)為 .
【答案】40°
【解析】解:如圖:連接BD, ∵AB是直徑,
∴∠ADB=90°,
∵BC切⊙O于點B,
∴∠ABC=90°,
∵∠C=40°,
∴∠BAC=50°,
∴∠ABD=40°,
∴∠E=∠ABD=40°.
所以答案是:40°.
【考點精析】本題主要考查了圓周角定理和切線的性質(zhì)定理的相關(guān)知識點,需要掌握頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問題:如何使用尺規(guī)完成“過直線l外一點A作已知直線l的平行線”.
小云的作法如下:
(1)在直線l 上任取一點B,以點B為圓心,AB長為半徑作弧, 交直線l 于點C;
(2)分別以A,C為圓心,以AB長為半徑作弧,兩弧相交于點D;
(3)作直線AD.
所以直線AD即為所求.
老師說:“小云的作法正確”.
請回答:小云的作圖依據(jù)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A在數(shù)軸上對應(yīng)的數(shù)為a,點B對應(yīng)的數(shù)為b,且a,b滿足:|a+3|+(b-2)2=0
(1)求線段AB的長;
(2)如圖①,點C在數(shù)軸上對應(yīng)的數(shù)為x,且是方程的根,在數(shù)軸上是否存在點M使MA+MB=BC+AB?若存在,求出點M對應(yīng)的數(shù);若不存在,說明理由;
(3)如圖②,若N點是B點右側(cè)一點,NA的中點為Q,P為NB的三等分點且靠近于B點,當(dāng)N在B的右側(cè)運動時,請直接判斷的值是不變的還是變的,如果不變請直接寫出其值,如果是變的請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC紙片沿DE折疊,使點A落在點A'處,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,則∠1+∠2的度數(shù)為( 。
A. 80°; B. 90°; C. 100°; D. 110°;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的周長是20,三邊分別為a,b,c.
(1)若b是最大邊,求b的取值范圍;
(2)若△ABC是三邊均不相等的三角形,b是最大邊,c是最小邊,且b=3c,a,b,c均為整數(shù),求△ABC的三邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;
(2)求出∠BOD的度數(shù);
(3)請通過計算說明OE是否平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,I點為△ABC的內(nèi)心,D點在BC上,且ID⊥BC,若∠B=44°,∠C=56°,則∠AID的度數(shù)為何?( 。
A. 174 B. 176 C. 178 D. 180
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是x軸上的一個動點,點C在y軸上,以AC為對角線畫正方形ABCD,已知點C的坐標(biāo)是,設(shè)點A的坐標(biāo)為.
當(dāng)時,正方形ABCD的邊長______.
連結(jié)OD,當(dāng)時,______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在籃球比賽中,某隊員連續(xù)10場比賽中每場的得分情況如下所示:
場次(場) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
得分(分) | 13 | 4 | 13 | 16 | 6 | 19 | 4 | 4 | 7 | 18 |
則這10場比賽中該隊員得分的中位數(shù)和眾數(shù)分別是( )
A.10,4
B.10,13
C.11,4
D.12.5,13
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com