【題目】如圖是甲、乙兩人從同一地點出發(fā)后,路程隨時間變化的圖象.
(1)此變化過程中,___________ 是自變量,___________ 是因變量.
(2)甲的速度 ___________ 乙的速度.(填“大于”、“等于”、或“小于”)
(3)甲與乙 ___________ 時相遇.
(4)甲比乙先走 ___________ 小時.
(5)9時甲在乙的 ___________ (填“前面”、“后面”、“相同位置”).
(6)路程為150km,甲行駛了___________ 小時,乙行駛了___________ 小時.
【答案】(1)時間、路程;(2)小于;(3)6;(4)3;(5)后面;(6)9、4.5.
【解析】(1)根據(jù)自變量與因變量的含義得到時間是自變量,路程是因變量;
(2)甲走6行駛100千米,乙走3小時行駛了100千米,則可得到它們的速度的大小;
(3)6時兩圖象相交,說明他們相遇;
(4)觀察圖象得到甲先出發(fā)3小時后,乙才開始出發(fā);
(5)觀察圖象得到t=9時,乙的圖象在甲的上方,即乙行駛的路程遠(yuǎn)些;
(6)觀察圖象得到路程為150km,甲行駛9小時;乙行駛了150÷=4.5小時.
(1)函數(shù)圖象反映路程隨時間變化的圖象,則時間是自變量,路程為因變量;
(2)甲的速度=千米/時,乙的速度=千米/時,所以甲的速度小于乙的速度;
(3)6時表示他們相遇,即乙追趕上了甲;
(4)甲先出發(fā)3小時后,乙才開始出發(fā);
(5)t=9時,乙的圖象在甲的上方,即乙行駛的路程遠(yuǎn)些,所以9時甲在乙的后面
(6)路程為150km,甲行駛9小時;乙行駛了150÷=4.5小時.
故答案為:(1)時間、路程;(2)小于;(3)6;(4)3;(5)后面;(6)9、4.5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市公共自行車服務(wù)公司調(diào)查某中學(xué)學(xué)生對公共自行車的了解情況,隨機抽取部分學(xué)生進(jìn)行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為A、B、C、D.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.
(1)本次問卷共隨機調(diào)查了 名學(xué)生,扇形統(tǒng)計圖中 .
(2)請根據(jù)數(shù)據(jù)信息補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中“D類型”所對應(yīng)的圓心角.
(3)若該校有1000名學(xué)生,估計選擇“非常了解”、“比較了解”共約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點在邊上,,.
(1)求證:;
(2)延長至點,使,連接,.判斷線段,的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年10月,某市高質(zhì)量通過全國文明城市測評,該成績的取得得益于領(lǐng)導(dǎo)高度重視(A)、整改措施有效(B)、市民積極參與(C)、市民文明素質(zhì)(D).某數(shù)學(xué)興趣小組隨機走訪了部分市民,對這四項認(rèn)可度進(jìn)行調(diào)查(只選填最認(rèn)可的一項),并將調(diào)查結(jié)果制作了如下兩幅不完整的統(tǒng)計圖.
(1)請補全D項的條形圖;
(2)已知B、C兩項條形圖的高度之比為3:5.
①選B、C兩項的人數(shù)各為多少個?
②求α的度數(shù),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在面積為3的△ABC中,AB=3,∠BAC=45°,點D是BC邊上一點.
(1)若AD是BC邊上的中線,求AD的長;
(2)點D關(guān)于直線AB和AC的對稱點分別為點M、N,求AN的長度的最小值;
(3)若P是△ABC內(nèi)的一點,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=4,AD是BC邊上的中線,將△ABD繞點A旋轉(zhuǎn),使AB與AC重合,連接DE,則線段DE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2016年泉州市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯誤的是( 。
A. 平均數(shù)為160 B. 中位數(shù)為158 C. 眾數(shù)為158 D. 方差為20.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣﹣x+4,
(1)用配方法確定它的頂點坐標(biāo)、對稱軸;
(2)x取何值時,y隨x增大而減?
(3)x取何值時,拋物線在x軸上方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面解答過程,并填空或在括號內(nèi)填寫理由.
已知BE平分∠ABC交AC于點E,DE∥BC,且∠ABC=110°,,請說明BE⊥AC.
解:∵平分(已知),
∴∠EBC=∠_______(角平分線定義).
∵,
∴∠EBC=_______.
∵∥,(已知),
∴∠EBC=∠_______(兩直線平行,內(nèi)錯角相等),
∠C=∠AED=35° (________).
∴∠AEB=∠______+∠______=90°.
∴.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com