【題目】如圖,將沿弦折疊,使折疊后的劣弧恰好經(jīng)過圓心O,連接并延長交于點C,點P是優(yōu)弧上的動點,連接.
(1)如圖,用尺規(guī)面出折疊后的劣弧所在圓的圓心,并求出的度數(shù);
(2)如圖,若是的切線,,求線段的長;
(3)如圖,連接,過點B作的重線,交的延長線于點D,求證:.
【答案】(1)圖見解析,=60°;(2)AP=4;(3)見解析.
【解析】
分別作AO,AB的垂直平分線,其交點即為劣弧所在圓的圓心,由作圖的過程可知AO,OB,,,分別為, 的半徑,可證△AO與△BO均為等邊三角形,點在上,則可求出,根據(jù)圓周角定理可求出的度數(shù);
連接,證明為的直徑,則,在 中利用勾股定理可求出AP的長;
延長AP至M,使,連接CM,證明∽,可證明,進一步可證明.
解:如圖1,分別作AO,AB的垂直平分線,其交點即為劣弧所在圓的圓心,
連接A,B,OB,
,OB,,,分別為,的半徑,
∴AO=BO===,
∴△AO與△BO均為等邊三角形,點在上,
∴,,
∴∠AOB=∠AO+∠BO=120°,
;
如圖2,連接,
是的切線,
∴AP⊥,
∴,
∴為圓O的直徑,
,
∴,
在 中,
;
如圖3,延長AP至M,使,連接CM,
為的直徑,
,
在中,
,
,
,,
,
由知,,
,
,
即,
,
∽,
,
,
,,
.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E,F分別在矩形ABCD的邊AB,BC上,連接EF,將△BEF沿直線EF翻折得到△HEF,AB=8,BC=6,AE:EB=3:1.
(1)如圖1,當∠BEF=45°時,EH的延長線交DC于點M,求HM的長;
(2)如圖2,當FH的延長線經(jīng)過點D時,求tan∠FEH的值;
(3)如圖3,連接AH,HC,當點F在線段BC上運動時,試探究四邊形AHCD的面積是否存在最小值?若存在,求出四邊形AHCD的面積的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于二次函數(shù),有下列結論:①其圖象與x軸一定相交;②若,函數(shù)在時,y隨x的增大而減小;③無論a取何值,拋物線的頂點始終在同一條直線上;④無論a取何值,函數(shù)圖象都經(jīng)過同一個點.其中所有正確的結論是___.(填寫正確結論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,AB=4,將△ABC繞點A逆時針旋轉60°,得到△ADE,連接CE,則CE等于( 。
A. 5B. 6C. 2+2D. 2+2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=x2+x-2與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,直線l經(jīng)過A,C兩點,連接BC.
(1)求直線l的解析式;
(2)若直線x=m(m<0)與該拋物線在第三象限內(nèi)交于點E,與直線l交于點D,連接OD.當OD⊥AC時,求線段DE的長;
(3)取點G(0,-1),連接AG,在第一象限內(nèi)的拋物線上,是否存在點P,使∠BAP=∠BCO-∠BAG?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,內(nèi)接于,,點為弦的中點,的延長線交于點,聯(lián)結,過點作交于點,聯(lián)結.
(1)求證:;
(2)如果的半徑為8,且,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點A測得大樹頂端B的仰角是45°,沿斜坡走米到達斜坡上點D,在此處測得樹頂端點B的仰角為30°,且斜坡AF的坡比為1︰2.則小明從點A走到點D的過程中,他上升的高度為____米;大樹BC的高度為____米(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( 。
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線=﹣3與=+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結淪:①無論x取何值,的值總是正數(shù);②2a=1;③當x=0時,﹣=4;④2AB=3AC.其中正確結論是______.(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com