【題目】如圖,△ABC中,∠BAC=36°,AD平分∠BAC,AM⊥AD交BC的延長線于M,若BM=BA+AC,則∠ABC=_________.
【答案】96°.
【解析】
根據(jù)題意延長BA到N,使得AN=AC,連接MN,求出∠NAM=∠MAC=108°,證△MAN≌△MAC,推出∠C=∠N,∠NMA=∠CMA,根據(jù)等腰三角形性質求出∠C=2∠AMC,根據(jù)三角形內角和定理求出∠AMC,根據(jù)三角形外角性質即可求出答案.
延長BA到N,使得AN=AC,連接MN,
∵AD平分∠BAC,
∴∠CAD=∠BAD=∠BAC=18°,
∵AM⊥AD,
∴∠MAD=90°,
∴∠BAM=90°18°=72°,
∴∠MAN=180°∠MAB=180°72°=108°,
∵∠MAC=90°+18°=108°,
∴∠MAN=∠MAC,
∵AM=AM,AN=AC,
∴△MAN≌△MAC,
∴∠C=∠N,∠NMA=∠CMA,
∵BM=AB+AC,AN=AC,
∴BM=BN,
∴∠N=∠NMB=2∠AMC,
∴∠C=2∠AMC,
∵∠C+∠AMC+∠MAC=180°,
∴3∠AMC=180°108°=72°,
∴∠AMC=24°,
∴∠ABC=∠AMC+∠MAB=72°+24°=96°,
故答案為:96°.
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y1=x﹣m+1和y2= (n≠0)的圖象交于P,Q兩點.
(1)若y1的圖象過(n,0),且m+n=3,求y2的函數(shù)表達式:
(2)若P,Q關于原點成中心對稱.
①求m的值;
②當x>2時,對于滿足條件0<n<n0的一切n總有y1>y2,求n0的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設A(t,0),當t=2時,AD=4.
(1)求拋物線的函數(shù)表達式.
(2)當t為何值時,矩形ABCD的周長有最大值?最大值是多少?
(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩地相距30千米,甲騎自行車從地出發(fā)前往地,乙在甲出發(fā)1小時后騎摩托車從地前往地,圖中的線段和線段分別反映了甲和乙所行使的路程(千米)與行使時間(小時)的函數(shù)關系。
請根據(jù)圖像所提供的信息回答問題:
(1)乙騎摩托車的速度是每小時20 千米;
(2)兩人的相遇地點與B地之間的距離是 千米;
(3)求出甲所行使的路程(千米)與行使時間(小時)的函數(shù)關系式,并寫出的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)某數(shù)學興趣小組想測量商丘電視臺電視塔的高度,如圖,該小組在商丘電視塔BC前一座樓房樓頂A處所觀測到電視塔最高點B的仰角為65°,電視塔最低點C的仰角為30°,樓頂A與電視塔的水平距離AD為90米,求商丘電視塔BC的高度.(結果精確到1米,參考數(shù)據(jù)≈1.41,≈1.73,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上張老師將課本44頁第4題進行了改編,圖形不變.請你完成下問題.
(1)如圖1,∠ACB=∠ADB,BC=BD,求證:△ABC≌△ABD.
(2)如圖2,∠CAB=∠DAB,BC=BD,求證:△ABC≌△ABD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以OA、OC為邊在第一象限內作長方形OABC.
(1)求點A、C的坐標;
(2)將△ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖②);
(3)在坐標平面內,是否存在點P(除點B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)說明BE=CF的理由;
(2)如果AB=5,AC=3,求AE、BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com