已知:如圖,點D是∠BAC內(nèi)的一點,連接BD、DC,∠A=30°,∠B+∠C=70°求∠BDC的度數(shù).

 

【答案】

100°

【解析】

試題分析:連接AD并延長至點M 

 

∵∠BDM是△ABD的外角∴∠BDM=∠B+ ∠BAD                    

∵∠CDM是△ACD的外角∴∠CDM=∠C+ ∠CAD                    

∴∠BDM+∠CDM =∠B+ ∠BAD+∠C+ ∠CAD          

即∴∠BDC=∠B+ ∠BAC+∠C=1000

考點:外角性質(zhì)

點評:本題難度較低,主要考查學生對外角性質(zhì)知識點的掌握。

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,點P是平行四邊形ABCD的邊DC上一點,且AP和BP分別平分∠DAB和∠C精英家教網(wǎng)BA.
(1)求證:AP⊥PB;
(2)如果AD=5,AP=8,求△APB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,點O是等腰直角△ABC斜邊AB的中點,D為BC邊上任意一點.
操作:在圖中作OE⊥OD交AC于E,連接DE.
問題:(1)觀察并猜測,無論∠DOE繞著點O旋轉(zhuǎn)到任何位置,OD和OE始終有何數(shù)量關(guān)系?(直接寫出答案)
 

(2)如圖所示,若BD=2,AE=4,求△DOE的面積.
(說明:如果經(jīng)過思考分析,沒有找到解決(2)中的問題的方法,請直接驗證(1)中猜測的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、已知:如圖,點P是正方形ABCD的對角線AC上的一個動點(A、C除外),作PE⊥AB于點E,作PF⊥BC于點F,設正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,點O是四邊形BCED外接圓的圓心,點O在BC上,點A在CB的延長線上,且∠AD精英家教網(wǎng)B=∠DEB,EF⊥BC于點F,交⊙O于點M,EM=2
5

(1)求證:AD是⊙O的切線;
(2)若弧BM上有一動點P,且sin∠CPM=
2
3
,求⊙O直徑的長;
(3)在(2)的條件下,如果DE=
14
,求tan∠DBE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

25、已知:如圖,點D是△ABC的邊AC上的一點,過點D作DE⊥AB,DF⊥BC,E、F為垂足,再過點D作DG∥AB,交BC于點G,且DE=DF.
(1)求證:DG=BG;
(2)求證:BD垂直平分EF.

查看答案和解析>>

同步練習冊答案