一元二次方程ax2+bx+c=0(a<0)的兩個(gè)實(shí)數(shù)根分別為x1、x2,x1=-2、1<x2<2,則( )
A.a(chǎn)<b<0
B.0<a<b
C.b<a<0
D.0<b<a
【答案】分析:利用一元二次方程的根與系數(shù)的關(guān)系求得x2-2=-②;然后不等式的性質(zhì)解答1>>0,知0<b<a.
解答:解:∵元二次方程ax2+bx+c=0(a<0)的兩個(gè)實(shí)數(shù)根分別為x1、x2,x1=-2,
∴x2-2=-,②
又∵1<x2<2,
∴-1<x2-2<0,即1>>0,
而a<0,
∴a<b<0.
故選A.
點(diǎn)評(píng):此題主要考查了根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式變形相結(jié)合解題是一種經(jīng)常使用的解題方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、一元二次方程ax2+bx+c=0滿(mǎn)足4a-2b+c=0,其必有一根是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、若a,b,c為正數(shù),已知關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)相等的實(shí)根,則方程(a+1)x2+(b+2)x+c+1=0的根的情況是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0)的兩實(shí)根之和( 。
A、與c無(wú)關(guān)B、與b無(wú)關(guān)C、與a無(wú)關(guān)D、與a,b,c都有關(guān)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•泰安)二次函數(shù)y=ax2+bx的圖象如圖,若一元二次方程ax2+bx+m=0有實(shí)數(shù)根,則m的最大值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若x1、x2為一元二次方程ax2+bx+c=0(a≠0)的兩根,則有x1+x2=-
b
a
,x1•x2=
c
a
,根據(jù)材料回答問(wèn)題:若x1、x2是一元二次方程2x2-4x+1=0的兩根,則(x1+1)(x2+1)=
7
2
7
2

查看答案和解析>>

同步練習(xí)冊(cè)答案