【題目】如圖,△ABC中,AD⊥BC于點D,AE是∠BAC的平分線,∠B=30°,∠C=70°,分別求:

(1)∠BAC的度數(shù);

(2)∠AED的度數(shù);

(3)∠EAD的度數(shù).

【答案】(1)80° (2)70° (3)20°

【解析】

(1)根據(jù)三角形的內(nèi)角和即可得到結(jié)論;.

(2)根據(jù)角平分線的定義和三角形的內(nèi)角和即可得到結(jié)論;.

(3)根據(jù)角平分線的定義和三角形的內(nèi)角和即可得到結(jié)論.

(1)∵∠B=30°,C=70°,.

∴∠BAC=180°-B-C=80°,.

(2)AD為高,.

∴∠ADC=90°,.

∴∠CAD=90°-C=90°-70°=20°,.

而AE為角平分線,.

∴∠CAE=BAC=40°,.

∴∠AED=90°-(CAE-CAD)=90°-(40°-20°)=70°;.

(3)AE是ABC的角平分線,.

∴∠BAE=BAC=40°,.

ADBC,.

∴∠BAD=90°-B=60°,.

∴∠EAD=BAD-BAE=60°-40°=20°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,已知AB=CD,點E、F分別為AD、BC的中點,延長BA、CD,分別交射線FE于P、Q兩點.求證:∠BPF=∠CQF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,E,F分別是AD,BC的中點,AFBE交于點GECDF交于點H,若GH=3,則AD=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角△ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BC于D,則陰影部分面積為(結(jié)果保留π)( )

A.24﹣4π
B.32﹣4π
C.32﹣8π
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),已知點,將點向右平移5個單位得到點

(1)描出點的位置,并求的面積.

(2)若在軸下方有一點,使,寫出一個滿足條件的點的坐標(biāo).并指出滿足條件的點有什么特征.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過點,

1求直線的解析式;

2若直線與直線相交于點求點的坐標(biāo);

3根據(jù)圖象直接寫出關(guān)于的不等式的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,以AD為底邊作等腰△ADE,將△ADE沿DE折疊,點A落到點F處,連接EF剛好經(jīng)過點C,再連接AF,分別交DE于G,交CD于H.在下列結(jié)論中:
①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤S△HCF=S△ADH
其中正確的結(jié)論有( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高空拋物極其危險,是我們必須杜絕的行為.據(jù)研究,高空拋物下落的時間t(單位:s)和高度 h(單位:m)近似滿足公式 t=(不考慮風(fēng)速的影響)

(1) 50m 高空拋物到落地所需時間 t1 是多少 s, 100m 高空拋物到落地所 需時間 t2 是多少 s;

(2)t2 t1 的多少倍?

(3)經(jīng)過 1.5s,高空拋物下落的高度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC,∠A=108°.

1)實踐與操作:作AB的垂直平分線DE,與AB,BC分別交于點DE(用尺規(guī)作圖.保留作圖痕跡,不要求寫作法)

2)推理與計算:求∠AEC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案