【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)經(jīng)過(guò)點(diǎn)A(4,﹣5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.
(1)求這條拋物線的表達(dá)式;
(2)聯(lián)結(jié)AB、BC、CD、DA,求四邊形ABCD的面積;
(3)如果點(diǎn)E在y軸的正半軸上,且∠BEO=∠ABC,求點(diǎn)E的坐標(biāo).

【答案】
(1)

解:

∵拋物線y=ax2+bx﹣5與y軸交于點(diǎn)C,

∴C(0,﹣5),

∴OC=5.

∵OC=5OB,

∴OB=1,

又點(diǎn)B在x軸的負(fù)半軸上,

∴B(﹣1,0).

∵拋物線經(jīng)過(guò)點(diǎn)A(4,﹣5)和點(diǎn)B(﹣1,0),

,解得 ,

∴這條拋物線的表達(dá)式為y=x2﹣4x﹣5.


(2)

解:由y=x2﹣4x﹣5,得頂點(diǎn)D的坐標(biāo)為(2,﹣9).

連接AC,

∵點(diǎn)A的坐標(biāo)是(4,﹣5),點(diǎn)C的坐標(biāo)是(0,﹣5),

又SABC= ×4×5=10,SACD= ×4×4=8,

∴S四邊形ABCD=SABC+SACD=18


(3)

解:過(guò)點(diǎn)C作CH⊥AB,垂足為點(diǎn)H.

∵SABC= ×AB×CH=10,AB=5 ,

∴CH=2 ,

在RT△BCH中,∠BHC=90°,BC= ,BH= =3 ,

∴tan∠CBH= =

∵在RT△BOE中,∠BOE=90°,tan∠BEO=

∵∠BEO=∠ABC,

,得EO= ,

∴點(diǎn)E的坐標(biāo)為(0,


【解析】(1)先得出C點(diǎn)坐標(biāo),再由OC=5BO,得出B點(diǎn)坐標(biāo),將A、B兩點(diǎn)坐標(biāo)代入解析式求出a,b;(2)分別算出△ABC和△ACD的面積,相加即得四邊形ABCD的面積;(3)由∠BEO=∠ABC可知,tan∠BEO=tan∠ABC,過(guò)C作AB邊上的高CH,利用等面積法求出CH,從而算出tan∠ABC,而BO是已知的,從而利用tan∠BEO=tan∠ABC可求出EO長(zhǎng)度,也就求出了E點(diǎn)坐標(biāo).本題為二次函數(shù)綜合題,主要考查了待定系數(shù)法求二次函數(shù)解析式、三角形面積求法、等積變換、勾股定理、正切函數(shù)等知識(shí)點(diǎn),難度適中.第(3)問(wèn),將角度相等轉(zhuǎn)化為對(duì)應(yīng)的正切函數(shù)值相等是解答關(guān)鍵.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解三角形的面積(三角形的面積=1/2×底×高),還要掌握勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從一個(gè)等腰三角形紙片的某角的頂點(diǎn)出發(fā),能將其剪成兩個(gè)等腰三角形紙片,則原等腰三角形紙片的底角為_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人沿一條直路行走,此人離出發(fā)地的距離千米與行走時(shí)間分鐘的函數(shù)關(guān)系如圖所示,請(qǐng)根據(jù)圖象提供的信息回答下列問(wèn)題:

此人離開出發(fā)地最遠(yuǎn)距離是______ 千米;

此人在這次行走過(guò)程中,停留所用的時(shí)間為______ 分鐘;

由圖中線段OA可知,此人在這段時(shí)間內(nèi)行走的速度是每小時(shí)______ 千米;

此人在120分鐘內(nèi)共走了______ 千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某建筑物BC頂部有一旗桿AB,且點(diǎn)A,B,C在同一條直線上,小紅在D處觀測(cè)旗桿頂部A的仰角為47°,觀測(cè)旗桿底部B的仰角為42°已知點(diǎn)D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結(jié)果保留小數(shù)后一位).參考數(shù)據(jù):tan47°≈1.07,tan42°≈0.90.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:| ﹣1|﹣ +

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,O為AC中點(diǎn),過(guò)點(diǎn)O的直線分別與AB、CD交于點(diǎn)E、F,連結(jié)BF交AC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°,F(xiàn)O=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④SAOE:SBCM=2:3.其中正確結(jié)論的個(gè)數(shù)是( 。
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=50°,ACB=60°,點(diǎn)EBC的延長(zhǎng)線上,∠ABC的平分線BD與∠ACE的平分線CD相交于點(diǎn)D,連接AD,以下結(jié)論:①∠BAC=70°;②∠DOC=90°;③∠BDC=35°;④∠DAC=55°,其中正確的是__________(填寫序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a1+a2+…+a30+a31與b1+b2+…+b30+b31均為等差級(jí)數(shù),且皆有31項(xiàng).若a2+b30=29,a30+b2=﹣9,則此兩等差級(jí)數(shù)的和相加的結(jié)果為多少?( 。
A.300
B.310
C.600
D.620

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABO中,AB⊥OB,OB= ,AB=1,把△ABO繞點(diǎn)O旋轉(zhuǎn)150°后得到△A1B1O,則點(diǎn)A1坐標(biāo)為(

A.(﹣1,﹣
B.(﹣1,﹣ )或(﹣2,0)
C.(﹣ ,1)或(0,﹣2)
D.(﹣ ,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案