【題目】如圖,正方形的邊長為2,點上,四邊形也是正方形,以為圓心,長為半徑畫,連結(jié),則圖中陰影部分面積為(

A.B.C.D.

【答案】A

【解析】

設(shè)正方形BEFG的邊長為a,根據(jù)正方形的性質(zhì)得出AB=BC=2,BG=FG=BE=EF=a,∠ABE=CEF=CBG=90°,根據(jù)圖形得出陰影部分的面積S=S扇形ABC+S正方形BEFG+SCEF-SAGF,分別求出即可.

設(shè)正方形BEFG的邊長為a,

∵四邊形ABCD和四邊形BEFG都是正方形,

AB=BC=2,BG=FG=BE=EF=a,∠ABE=CEF=CBG=90°,

∴陰影部分的面積S=S扇形ABC+S正方形BEFG+SCEF-SAGF

=

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠C90°,BC3,AC4,BD平分∠ABC,將△ABC繞著點A旋轉(zhuǎn)后,點B、C的對應(yīng)點分別記為B1C1,如果點B1落在射線BD上,那么CC1的長度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鮮豐水果店計劃用/盒的進價購進一款水果禮盒以備銷售.

據(jù)調(diào)查,當(dāng)該種水果禮盒的售價為/盒時,月銷量為盒,每盒售價每增長元,月銷量就相應(yīng)減少盒,若使水果禮盒的月銷量不低于盒,每盒售價應(yīng)不高于多少元?

在實際銷售時,由于天氣和運輸?shù)脑,每盒水果禮盒的進價提高了,而每盒水果禮盒的售價比(1)中最高售價減少了,月銷量比(1)中最低月銷量盒增加了,結(jié)果該月水果店銷售該水果禮盒的利潤達到了元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統(tǒng)計圖,請你依圖解答下列問題:

(1)a=   ,b=   ,c=   ;

(2)扇形統(tǒng)計圖中表示C等次的扇形所對的圓心角的度數(shù)為   度;

(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學(xué)生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形的邊軸上,點的坐標(biāo)為,點是對角線上的一個動點,點軸上,當(dāng)最短時,點的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線過點,且與直線交于B、C兩點,點B的坐標(biāo)為

1)求拋物線的解析式;

2)點D為拋物線上位于直線上方的一點,過點D軸交直線于點E,點P為對稱軸上一動點,當(dāng)線段的長度最大時,求的最小值;

3)設(shè)點M為拋物線的頂點,在y軸上是否存在點Q,使?若存在,求點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】深圳某學(xué)校為構(gòu)建書香校園,擬購進甲、乙兩種規(guī)格的書柜放置新購置的圖書.已知每個甲種書柜的進價比每個乙種書柜的進價高20%,用3600元購進的甲種書柜的數(shù)量比用4200元購進的乙種書柜的數(shù)量少4臺.

1)求甲、乙兩種書柜的進價;

2)若該校擬購進這兩種規(guī)格的書柜共60個,其中乙種書柜的數(shù)量不大于甲種書柜數(shù)量的2倍.請您幫該校設(shè)計一種購買方案,使得花費最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】上海世博園開放后,前往參觀的人非常多.5月中旬的一天某一時段,隨機調(diào)查了部分入園游客,統(tǒng)計了他們進園前等候檢票的時間,并繪制成如下圖表.表中“10~20”表示等候檢票的時間大于或等于10min而小于20min,其它類同.

(1)這里采用的調(diào)查方式是__________;

(2)求表中a、b、c的值,并請補全頻數(shù)分布直方圖;

(3)在調(diào)查人數(shù)里,等候時間少于40min的有人___________;

(4)此次調(diào)查中,中位數(shù)所在的時間段是__________~__________min.

時間分段/min

頻數(shù)/人數(shù)

頻率

10~20

8

0.200

20~30

14

a

30~40

10

0.250

40~50

b

0.125

50~60

3

0.075

合計

c

1.000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在RtABC中,∠C90°,ACBC10,點D,E在線段BC上,且CD2,BE5,點P,Q分別是線段AC,AB上的動點,則四邊形PQED周長的最小值為_____

查看答案和解析>>

同步練習(xí)冊答案