【題目】如圖,已知正方形的邊長(zhǎng)為6,點(diǎn)上的點(diǎn),,將沿著直線翻折,點(diǎn)落在點(diǎn)處,的延長(zhǎng)線交線段,則的長(zhǎng)度是____

【答案】

【解析】

延長(zhǎng)AEDC的延長(zhǎng)線交于H,根據(jù)翻折變換的性質(zhì)可得AFAB,∠BAE=∠FAE,再根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠BAE=∠H,從而得到∠GAE=∠H,根據(jù)等角對(duì)等邊可得AGGH,設(shè)CGx,表示出DG、AG,然后利用勾股定理列方程求出x的值,從而得到CG的值.

解:延長(zhǎng)AEDC的延長(zhǎng)線交于H,

∵△ABE沿直線AE翻折,點(diǎn)B落在點(diǎn)F處,


AFAB6,∠BAE=∠FAE,
∵正方形對(duì)邊ABCD,
∴∠BAE=∠H,
∴∠GAE=∠H,
AGHG

∵正方形ABCD,

∴∠B=BCH=90°,

∵∠AEB=HEC

∴△AEB∽△HEC

,
CH3
設(shè)CGx,

DG6x,AGHG3x,
RtADG中,由勾股定理得,AG2AD2DG2,
即(3x262+(6x2,
解得x

CG=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,為線段上的一個(gè)動(dòng)點(diǎn),分別以,為邊在的同側(cè)作菱形和菱形,點(diǎn),,在一條直線上,.分別是對(duì)角線,的中點(diǎn).當(dāng)點(diǎn)在線段上移動(dòng)時(shí),點(diǎn),之間的距離最短為(  )

A.B.C.4D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是學(xué)習(xí)分式方程應(yīng)用時(shí),老師板書(shū)的問(wèn)題和兩名同學(xué)所列的方程

方程中的表示的意義,下列說(shuō)法錯(cuò)誤的是(

A.表示甲隊(duì)每天修路的長(zhǎng)度B.表示乙隊(duì)每天修路的長(zhǎng)度

C.表示甲隊(duì)修米所用的時(shí)間D.表示乙隊(duì)修米所用的時(shí)間

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,排球場(chǎng)長(zhǎng)為18m,寬為9m,網(wǎng)高為2.24m.隊(duì)員站在底線O點(diǎn)處發(fā)球,球從點(diǎn)O的正上方1.9mC點(diǎn)發(fā)出,運(yùn)動(dòng)路線是拋物線的一部分,當(dāng)球運(yùn)動(dòng)到最高點(diǎn)A時(shí),高度為2.88m.即BA2.88m.這時(shí)水平距離OB7m,以直線OBx軸,直線OCy軸,建立平面直角坐標(biāo)系,如圖2

1)若球向正前方運(yùn)動(dòng)(即x軸垂直于底線),求球運(yùn)動(dòng)的高度ym)與水平距離xm)之間的函數(shù)關(guān)系式(不必寫(xiě)出x取值范圍).并判斷這次發(fā)球能否過(guò)網(wǎng)?是否出界?說(shuō)明理由;

2)若球過(guò)網(wǎng)后的落點(diǎn)是對(duì)方場(chǎng)地號(hào)位內(nèi)的點(diǎn)P(如圖1,點(diǎn)P距底線1m,邊線0.5m),問(wèn)發(fā)球點(diǎn)O在底線上的哪個(gè)位置?(參考數(shù)據(jù):1.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位需購(gòu)買(mǎi)甲、乙兩種消毒劑.經(jīng)了解,這兩種消毒劑的價(jià)格都有零售價(jià)和批發(fā)價(jià)(若按批發(fā)價(jià),則每種消毒劑購(gòu)買(mǎi)的數(shù)量不少于50),零售時(shí)甲種消毒劑每桶比乙種消毒劑多8元,已知購(gòu)買(mǎi)兩種消毒劑各()桶,所需費(fèi)用分別是960元、720元.

1)求甲、乙兩種消毒劑的零售價(jià);

2)該單位預(yù)計(jì)批發(fā)這兩種消毒劑500桶,且甲種消毒劑的數(shù)量不少于乙種消毒劑數(shù)量的,甲、乙兩種消毒劑的批發(fā)價(jià)分別為20/桶、16/桶.設(shè)甲種消毒劑批發(fā)數(shù)量為桶,購(gòu)買(mǎi)資金總額為(),請(qǐng)寫(xiě)出的函數(shù)關(guān)系式,并求出的最小值和此時(shí)的購(gòu)買(mǎi)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形,,連結(jié),點(diǎn)在射線上,以為邊在上方作,作,連結(jié)

1)當(dāng)點(diǎn)在線段上時(shí),證明:

2)若時(shí),求的面積;

3的外接圓交射線于點(diǎn),作直線交直線于點(diǎn),交直線于點(diǎn),連接,若,求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)公共點(diǎn),那么一元二次方程ax2+bx+c=0有兩個(gè)不相等的實(shí)數(shù)根.請(qǐng)根據(jù)你對(duì)這句話的理解,解決下面問(wèn)題:若mnmn)是關(guān)于x的方程1﹣x﹣a)(x﹣b=0的兩根,且ab,則a、bm、n的大小關(guān)系是( ).

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

已知:把RtABC和RtDEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.ACB = EDF = 90°,DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm

如圖(2),DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CBABC勻速動(dòng),在DEF移動(dòng)的同時(shí),點(diǎn)P從ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng).當(dāng)DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),DEF停止移動(dòng),點(diǎn)P也隨之停止移動(dòng).DE與AC相交于點(diǎn)Q,連接PQ,設(shè)動(dòng)時(shí)間為t(s)(0<t<4.5).

解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?

(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最?若存在,求出y的最小值;若不存在,說(shuō)明理由.

(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,且經(jīng)過(guò)弦CD的中點(diǎn)H,已知sinCDB=,BD=5,則AH的長(zhǎng)為( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案