【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,且AC=8,DB=6,E為AD的中點(diǎn),則OE的長(zhǎng)為 .
【答案】2.5
【解析】解:∵菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,且AC=8,DB=6,
∴AO=4,DO=3,∠AOD=90°,
∴AD=5,
∵E為AD的中點(diǎn),
∴OE的長(zhǎng)為: AD=2.5.
所以答案是:2.5.
【考點(diǎn)精析】掌握三角形中位線定理和菱形的性質(zhì)是解答本題的根本,需要知道連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分線相交于點(diǎn)E,過(guò)點(diǎn)E作EF∥BC交AC于點(diǎn)F,則EF的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,其面積標(biāo)記為S1 , 以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2 , …,按照此規(guī)律繼續(xù)下去,則S2017的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在精準(zhǔn)扶貧中,某村的李師傅在縣政府的扶持下,去年下半年,他對(duì)家里的3個(gè)溫室大棚進(jìn)行修整改造,然后,1個(gè)大棚種植香瓜,另外2個(gè)大棚種植甜瓜,今年上半年喜獲豐收,現(xiàn)在他家的甜瓜和香瓜已全部售完,他高興地說(shuō):“我的日子終于好了”.
最近,李師傅在扶貧工作者的指導(dǎo)下,計(jì)劃在農(nóng)業(yè)合作社承包5個(gè)大棚,以后就用8個(gè)大棚繼續(xù)種植香瓜和甜瓜,他根據(jù)種植經(jīng)驗(yàn)及今年上半年的市場(chǎng)情況,打算下半年種植時(shí),兩個(gè)品種同時(shí)種,一個(gè)大棚只種一個(gè)品種的瓜,并預(yù)測(cè)明年兩種瓜的產(chǎn)量、銷(xiāo)售價(jià)格及成本如下:
現(xiàn)假設(shè)李師傅今年下半年香瓜種植的大棚數(shù)為x個(gè),明年上半年8個(gè)大棚中所產(chǎn)的瓜全部售完后,獲得的利潤(rùn)為y元.
根據(jù)以上提供的信息,請(qǐng)你解答下列問(wèn)題:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)求出李師傅種植的8個(gè)大棚中,香瓜至少種植幾個(gè)大棚?才能使獲得的利潤(rùn)不低于10萬(wàn)元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的半徑長(zhǎng)為1,AB、AC是⊙O的兩條弦,且AB=AC,BO的延長(zhǎng)線交AC于點(diǎn)D,聯(lián)結(jié)OA、OC.
(1)求證:△OAD∽△ABD;
(2)當(dāng)△OCD是直角三角形時(shí),求B、C兩點(diǎn)的距離;
(3)記△AOB、△AOD、△COD 的面積分別為S1、S2、S3,如果S2是S1和S3的比例中項(xiàng),求OD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市出租車(chē)收費(fèi)標(biāo)準(zhǔn)為:起步價(jià)(3千米以內(nèi)或3千米)10元,3千米后每千米價(jià)1.8元,則某人乘坐出租車(chē)x(x>3)千米需付費(fèi)( )元.
A. 10+1.8xB. 3+1.8x
C. 10+1.8(x﹣3)D. 3+1.8(x﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,∠B與∠C的平分線交于點(diǎn)P.
(1)當(dāng)∠A=112°時(shí),求∠BPC的度數(shù);
(2)當(dāng)∠A=α?xí)r,求∠BPC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com