如圖,在△ABC中,已知AB=5,BC=8,AC=7,動(dòng)點(diǎn)P、Q分別在邊AB、AC上,使△APQ的外接圓與BC相切,則線段PQ的最小值等于______.
如圖,設(shè)點(diǎn)O是△APQ的外接圓的圓心,連接OP,OQ,作OH⊥PQ于點(diǎn)H,過點(diǎn)A作AD⊥BC于點(diǎn)D,
∴PH=QH=
1
2
PQ,
∵OP=OQ,
∴∠POH=
1
2
∠POQ,
∵∠POQ=2∠BAC,
∴∠POH=∠BAC,
在Rt△POH中,PH=OP•sin∠POH=OA•sin∠BAC,
∴PQ=2OA•sin∠BAC,
即當(dāng)OA最小時(shí),PQ最小,
∵當(dāng)AD是直徑時(shí),即OA=
1
2
AD時(shí),PQ最小,
設(shè)BD=x,則CD=8-x,
∵在Rt△ABD中,AD2=AB2-AD2,
在Rt△ACD中,AD2=AC2-CD2,
∴25-x2=49-(8-x)2,
解得:x=
5
2
,
∴AD=
AB2-BD2
=
5
3
2
,
∴OA=
5
3
4

設(shè)AC邊上的高為h,
則AC•h=BC•AD,
∴h=
BC•AD
AC
=
20
3
7
,
∴sin∠BAC=
h
AB
=
4
3
7
,
∴PQ=2OA•sin∠BAC=2×
5
3
4
×
4
3
7
=
30
7

故答案為:
30
7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖,在同心圓中,大圓的弦AB,CD分別與小圓相切于點(diǎn)E,F(xiàn),則弦AB,CD的大小關(guān)系是( 。
A.AB>CDB.AB=CDC.AB<CDD.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線l1l2,⊙O與l1和l2分別相切于點(diǎn)A和點(diǎn)B.點(diǎn)M和點(diǎn)N分別是l1和l2上的動(dòng)點(diǎn),MN沿l1和l2平移.⊙O的半徑為1,∠1=60°.下列結(jié)論錯(cuò)誤的是( 。
A.MN=
4
3
3
B.l1和l2的距離為2
C.若∠MON=90°,則MN與⊙O相切
D.若MN與⊙O相切,則AM=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在⊙O中,弦AB與半徑相等,連接OB并延長,使BC=OB.
(1)試判斷直線AC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)請(qǐng)你在⊙O上找到一個(gè)點(diǎn)D,使AD=AC(完成作圖,證明你的結(jié)論),并求∠ABD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD的邊AD、AB分別與⊙O相切于E、F,AE=
3

(1)求弧EF的長.
(2)若AD=
3
+5
,直線MN分別交DA、DC于點(diǎn)M、N,∠DMN=60°,將直線MN沿射線DA方向平移,當(dāng)MN和⊙O第一次相切時(shí),求點(diǎn)D到直線MN的距離.
(3)若點(diǎn)D到直線MN的距離為4時(shí),請(qǐng)直接寫出⊙O和直線MN的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB切⊙O于點(diǎn)B,∠A=30°,AB=2
3
,則半徑OB的長為( 。
A.1B.
3
C.2D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,兩個(gè)同心圓,大圓半徑為5cm,小圓的半徑為3cm,若大圓的弦AB與小圓相交,則弦AB的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖,以Rt△ABC的斜邊AB為直徑作⊙0,D是BC上的點(diǎn),且有弧AC=弧CD,連CD、BD,在BD延長線上取一點(diǎn)E,使∠DCE=∠CBD.
(1)求證:CE是⊙0的切線;
(2)若CD=2
5
,DE和CE的長度的比為
1
2
,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△AOB中,OA=OB=3
2
,⊙O的半徑為1,點(diǎn)P是AB邊上的動(dòng)點(diǎn),過點(diǎn)P作⊙O的一條切線PQ(點(diǎn)Q為切點(diǎn)),則切線PQ的最小值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案