【題目】如圖,在平面直角坐標(biāo)系中,的三個頂點都在格點上,點A的坐標(biāo)為,點B的坐標(biāo)為,點C的坐標(biāo)為,請解答下列問題:

畫出關(guān)于y軸對稱的,使點A對應(yīng),點B對應(yīng);

畫出繞原點O順時針旋轉(zhuǎn)后得到的,使點A對應(yīng),點B對應(yīng);

關(guān)于某直線對稱,請直接寫出該直線的解析式______;

直接寫出外接圓圓心的坐標(biāo)______

【答案】(1)見解析;(2)見解析;(3)y=x;(4)

【解析】

1)根據(jù)關(guān)于y軸對稱的點的坐標(biāo)特征寫出A1,B1C1點的坐標(biāo)然后描點即可;

2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出A、B、C的對應(yīng)點A2、B2、C2從而得到△A2B2C2;

3)利用所畫圖形可得到△A1B1C1和△A2B2C2關(guān)于第一、三象限的角平分線對稱

4)作ABAC的垂直平分線,它們的交點P為△ABC外接圓圓心,然后寫出P點坐標(biāo)即可

1)如圖A1B1C1為所作;

2)如圖A2B2C2為所作;

3A1B1C1和△A2B2C2關(guān)于直線y=x對稱;

4ABC外接圓圓心的坐標(biāo)為(4,1).

故答案為:y=x,(4,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2﹣bx+c交x軸于點A(1,0),交y軸于點B,對稱軸是x=2.

(1)求拋物線的解析式;

(2)點P是拋物線對稱軸上的一個動點,是否存在點P,使PAB的周長最?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+x+4的對稱軸是直線x=3,且與軸相交于A、B兩點(B點在A點的右側(cè)),與軸交于C點.

(1)A點的坐標(biāo)是   ;B點坐標(biāo)是   

(2)直線BC的解析式是:   ;

(3)點P是直線BC上方的拋物線上的一動點(不與B、C重合),是否存在點P,使△PBC的面積最大.若存在,請求出△PBC的最大面積,若不存在,試說明理由;

(4)若點Mx軸上,點N在拋物線上,以A、C、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在RtABC中,ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結(jié)論:EDBC;②∠A=EBA;EB平分AED;ED=AB中,一定正確的是( )

A.①②③ B.①②④ C.①③④ D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點C為線段AB上一點,分別以AC、BC為邊在線段AB同側(cè)作△ACD△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AEBD交于點F,

(1)如圖1,若∠ACD=60°,則∠AFB=   ;如圖2,若∠ACD=90°,則∠AFB=   ;如圖3,若∠ACD=120°,則∠AFB=   ;

(2)如圖4,若∠ACD=α,則∠AFB=   (用含α的式子表示);

(3)將圖4中的△ACD繞點C順時針旋轉(zhuǎn)任意角度(交點F至少在BD、AE中的一條線段上),變成如圖5所示的情形,若∠ACD=α,則∠AFBα的有何數(shù)量關(guān)系?并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC為等邊三角形,P是直線AC上一點,ADBPD,以AD為邊作等邊ADE(D,E在直線AC異側(cè)).

(1)如圖1,若點P在邊AC上,連CD,且∠BDC=150°,則= ;(直接寫結(jié)果)

(2)如圖2,若點PAC延長線上,DEBCF求證:BF=CF;

(3)在圖2中,若∠PBC=15°,AB=,請直接寫出CP的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點是直線上一動點,點在點的下方,且軸,軸上有一點,當(dāng)值最小時,點的坐標(biāo)為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于點,

(1)求反比例函數(shù)與一次函數(shù)的函數(shù)表達(dá)式

(2)請結(jié)合圖像直接寫出不等式的解集;

(3)若點Px軸上一點,ABP的面積為10,求點P的坐標(biāo),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、BC、CD分別與⊙O相切于E、F、G,且ABCD,OB=6cm,OC=8cm.求:

(1)BOC的度數(shù);

(2)BE+CG的長;

(3)O的半徑.

查看答案和解析>>

同步練習(xí)冊答案