【題目】平面上,將邊長相等的正三角形、正方形、正五邊形、正六邊形的一邊重合并疊在一起,如圖,則∠3+∠1﹣∠2= .
【答案】24°
【解析】解:正三角形的每個內(nèi)角是: 180°÷3=60°,
正方形的每個內(nèi)角是:
360°÷4=90°,
正五邊形的每個內(nèi)角是:
(5﹣2)×180°÷5
=3×180°÷5
=540°÷5
=108°,
正六邊形的每個內(nèi)角是:
(6﹣2)×180°÷6
=4×180°÷6
=720°÷6
=120°,
則∠3+∠1﹣∠2
=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)
=30°+12°﹣18°
=24°.
故答案為:24°.
首先根據(jù)多邊形內(nèi)角和定理,分別求出正三角形、正方形、正五邊形、正六邊形的每個內(nèi)角的度數(shù)是多少,然后分別求出∠3、∠1、∠2的度數(shù)是多少,進而求出∠3+∠1﹣∠2的度數(shù)即可.
科目:初中數(shù)學 來源: 題型:
【題目】某班級45名同學自發(fā)籌集到1700元資金,用于初中畢業(yè)時各項活動的經(jīng)費.通過商議,決定拿出不少于544元但不超過560元的資金用于請專業(yè)人士拍照,其余資金用于給每名同學購買一件文化衫或一本制作精美的相冊作為紀念品.已知每件文化衫28元,每本相冊20元.
(1)適用于購買文化衫和相冊的總費用為W元,求總費用W(元)與購買的文化衫件數(shù)t(件)的函數(shù)關系式.
(2)購買文化衫和相冊有哪幾種方案?為了使拍照的資金更充足,應選擇哪種方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了增強學生體質,決定開設以下體育課外活動項目:A籃球、B乒乓球、C跳繩、D踢毽子,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:
(1)這次被調查的學生共有人;
(2)請你將條形統(tǒng)計圖補充完成;
(3)在平時的乒乓球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,一元二次方程x2=﹣1沒有實數(shù)根,即不存在一個實數(shù)的平方等于﹣1,若我們規(guī)定一個新數(shù)i,使其滿足i2=﹣1(即x2=﹣1方程有一個根為i),并且進一步規(guī)定:一切實數(shù)可以與新數(shù)進行四則運算,且原有的運算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2i=(﹣1)i,i4=(i2)2=(﹣1)2=1,從而對任意正整數(shù)n,我們可得到i4n+1=i4ni=(i4)ni,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1,那么,i+i2+i3+i4+…+i2016+i2017的值為( )
A.0
B.1
C.﹣1
D.i
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線l交x軸于點C,交y軸于點D,與反比例函數(shù)y= (k>0)的圖象交于兩點A、E,AG⊥x軸,垂足為點G,S△ADG=3
(1)k=;
(2)求證:AD=CE;
(3)如圖2,若點E為平行四邊形OABC的對角線AC的中點,求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.
(1)求拋物線的表達式;
(2)當P位于y軸右邊的拋物線上運動時,過點C作CF⊥直線l,F(xiàn)為垂足,當點P運動到何處時,以P,C,F(xiàn)為頂點的三角形與△OBC相似?并求出此時點P的坐標;
(3)如圖2,當點P在位于直線BC上方的拋物線上運動時,連結PC,PB,請問△PBC的面積S能否取得最大值?若能,請求出最大面積S,并求出此時點P的坐標,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)問題進行證明:
(1)已知:如圖,在正方形ABCD中,點E在邊CD上,AQ⊥BE于點Q,DP⊥AQ于點P,求證:AP=BQ.
(2)如圖,已知AB是⊙O的直徑,AC是⊙O的弦,過點C的切線交AB的延長線于點D且∠A=∠D.求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,tanA= ,點E、F分別是AB、AD上任意的點(不與端點重合),且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H,給出如下幾個結論:(1)△AED≌△DFB;(2)CG與BD一定不垂直;(3)∠BGE的大小為定值;(4)S四邊形BCDG= CG2;其中正確結論的序號為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com