【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為A(0,α),B(b,α),且α、b滿足(a﹣2)+=0,現(xiàn)同時將點A,B分別向下平移2個單位,再向左平移1個單位,分別得到點A,B的對應點C,D,連接AC,BD,AB.
(1)求點C,D的坐標及四邊形ABDC的面積.
(2)在y軸上是否存在一點M,連接MC,MD,使S△MCD=2S四邊形ABDC?若存在這樣一點,求出點M的坐標,若不存在,試說明理由;
(3)點P是直線BD上的一個動點,連接PA,PO,當點P在直線BD上移動時(不與B,D重合)直接寫出∠BAP,∠DOP,∠APO之間滿足 的數(shù)量關系.
【答案】(1)C(1,0),D(2,0),S四邊形ABDC=6;(2) M(0,8)或(0,8);(3) ①當點P在線段BD上移動時,∠APO=∠DOP+∠BAP②當點P在DB的延長線上時,∠DOP=∠BAP+∠APO;③當點P在BD的延長線上時,∠BAP=∠DOP+∠APO.
【解析】
(1)先由非負數(shù)性質求出a=2,b=4,再根據(jù)平移規(guī)律,得出點C,D的坐標,然后根據(jù)四邊形ABDC的面積=AB×OA即可求解;
(2)存在.設M坐標為(0,m),根據(jù)S△PAB=S四邊形ABDC,列出方程求出m的值,即可確定M點坐標;
(3)分三種情況討論,過P點作PE∥AB交OC與E點,根據(jù)平行線的性質即可求解.
(1)∵(a﹣2)+=0,
∴a﹣2=0,b-3=0
∴a=2,b=3,
∴A(0,2),B(3,2),AB=3,OA=2
∵點A,B分別向下平移2個單位,再向左平移1個單位,分別得到點A,B的對應點C,D,
∴C(1,0),D(2,0),CD=3
∴S四邊形ABDC=AB×OA=3×2=6;
(2)在y軸上存在一點M,使S△MCD=S四邊形ABCD.設M坐標為(0,m).
∵S△MCD=2S四邊形ABDC,
∴×3|m|=12,
∴|m|=8,
解得m=±8.
∴M(0,8)或(0,8);
(3)①當點P在線段BD上移動時,∠APO=∠DOP+∠BAP
理由如下:
過點P作PE∥AB交OA于E.
∵CD由AB平移得到,則CD∥AB,
∴PE∥CD∥AB,
∴∠BAP=∠APE,∠DOP=∠OPE,
∴∠BAP+∠DOP=∠APE+∠OPE=∠APO,
②當點P在DB的延長線上時,∠DOP=∠BAP+∠APO;
理由如下:
過點P作PE∥AB交OA于E.
∵CD由AB平移得到,則CD∥AB,
∴PE∥CD∥AB,
∴∠BAP=∠APE,∠DOP=∠OPE,
∴∠BAP+∠APO=∠APE+∠APO=∠OPE =∠DOP,
③當點P在BD的延長線上時,∠BAP=∠DOP+∠APO.
理由如下:
過點P作PE∥AB交OA于E.
∵CD由AB平移得到,則CD∥AB,
∴PE∥CD∥AB,
∴∠BAP=∠APE,∠DOP=∠OPE,
∴∠DOP+∠APO=∠OPE+∠APO=∠APE =∠BAP.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點,點B的坐標為(2m,﹣m).
(1)求出m值并確定反比例函數(shù)的表達式;
(2)請直接寫出當x<m時,y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,是上一點,于點,是的中點,于點,與交于點,若,平分,連結,.
(1)求證:;
(2)求證:.
(3)若,判定四邊形是否為菱形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,在平面直角坐標系中,點A,B,E分別是x軸和y軸上的任意點. BD是∠ABE的平分線,BD的反向延長線與∠OAB的平分線交于點C.
探究: (1)求∠C的度數(shù).
發(fā)現(xiàn): (2)當點A,點B分別在x軸和y軸的正半軸上移動時,∠C的大小是否發(fā)生變化?若不變,請直接寫出結論;若發(fā)生變化,請求出∠C的變化范圍.
應用:(3)如圖2在五邊形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延長線與∠EDC外角的平分線相交于點P,求∠P的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校學生對A《最強大腦》、B《朗讀者》、C《中國詩詞大會》、D《出彩中國人》四個電視節(jié)目的喜愛情況,隨機抽取了m學生進行調查統(tǒng)計(要求每名學生選出并且只能選出一個自己最喜愛的節(jié)目),將調查結果繪制成如下兩幅不完整的統(tǒng)計圖(如圖1和圖2):
根據(jù)統(tǒng)計圖提供的信息,回答下列問題;
(1)m= ,n= ;
(2)扇形統(tǒng)計圖中,喜愛《最強大腦》節(jié)目所對應的扇形的圓心角度數(shù)是 度.
(3)根據(jù)以上信息直接在答題卡中補全條形統(tǒng)計圖;
(4)根據(jù)抽樣調查結果,請你估計該校6000名學生中有多少學生最喜歡《中國詩詞大會》節(jié)目.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究學習:
(1)感知與填空
如圖,直線.求證:.
閱讀下面的解答過程,并填上適當?shù)睦碛桑?/span>
解:延長交于,
∵(已知),∴( )
∵( ),
∴(等量代換)
(2)應用與拓展
如圖,直線.若,,,則______度.
(3)方法與實踐
如圖,直線.請?zhí)骄?/span>,和之間有怎樣的關系,并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條東西走向河的一側有一村莊C,河邊原有兩個取水點A,B,其中AB=AC,由于某種原因,由C到A的路現(xiàn)在已經(jīng)不通,某村為方便村民取水決定在河邊新建一個取水點H(A、H、B在一條直線上),并新修一條路CH,測得CB=3千米,CH=2.4千米,HB=1.8千米.
(1)問CH是否為從村莊C到河邊的最近路?(即問:CH與AB是否垂直?)請通過計算加以說明;
(2)求原來的路線AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角形ABC(記作△ABC)在8×8方格中,位置如圖所示,A(﹣2,1),B(﹣1,4).
(1)請你在方格中建立直角坐標系,并寫出C點的坐標;
(2)把△ABC向上平移2個單位長度,再向右平移3個單位長度,請你畫出平移后的△A1B1C1,若△ABC內(nèi)部一點P的坐標為(a,b),則點P的對應點P1的坐標是 .
(3)在x軸上存在一點D,使△DBC的面積等于3,則點D的坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com