【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在x軸上、y軸上,CB//OA,OA=8,若點(diǎn)B的坐標(biāo)為(a,b),且b=.
(1)直接寫(xiě)出點(diǎn)A、B、C的坐標(biāo);
(2)若動(dòng)點(diǎn)P從原點(diǎn)O出發(fā)沿x軸以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),當(dāng)直線PC把四邊形OABC分成面積相等的兩部分停止運(yùn)動(dòng),求P點(diǎn)運(yùn)動(dòng)時(shí)間;
(3)在(2)的條件下,在y軸上是否存在一點(diǎn)Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)A(8,0),B(4,4),C(0.4);(2)t=;(3)(0,13),(0,-5)
【解析】分析:(1)根據(jù)線段的長(zhǎng)和線段的特點(diǎn)以及二次根式有意義的條件確定出點(diǎn)的坐標(biāo);
(2)先求出S四邊形OABC=24,從而得到×OP×4=12,求出OP即可得到結(jié)論;
(3)根據(jù)四邊形OABC的面積求出△CPQ的面積是24,即可求出點(diǎn)Q的坐標(biāo).
詳解:(1)過(guò)B作BE⊥OA于E.∵a-4≥0且4-a≥0,∴a=4,∴b=4,∴B(4,4),∴OC=EB=4,∴C(0.4).∵OA=8,∴A(8,0);
(2)設(shè)運(yùn)動(dòng)時(shí)間t秒,∴OP=2t, ∴2t4=,∴t=3.
(3)設(shè)Q(0,y), ∵,∴ =(4+8)4,
∴=13,=-5,∴(0,13),(0,-5)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動(dòng)點(diǎn)M沿路線O→A→C運(yùn)動(dòng).
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當(dāng)△OMC的面積是△OAC的面積的時(shí),求出這時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,點(diǎn)E在邊AD上,點(diǎn)F在邊BC上,且AE=CF,作EG∥FH,分別與對(duì)角線BD交于點(diǎn)G、H,連接EH,F(xiàn)G.
(1)求證:△BFH≌△DEG;
(2)連接DF,若BF=DF,則四邊形EGFH是什么特殊四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)O是AC與BD的交點(diǎn),過(guò)點(diǎn)O的直線與BA的延長(zhǎng)線,DC的延長(zhǎng)線分別交于點(diǎn)E,F.
(1)求證:△AOE≌△COF.
(2)連接EC,AF,則EF與AC滿足什么數(shù)量關(guān)系時(shí),四邊形AECF是矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中,且A、B、C.將其平移后得到,若A,B的對(duì)應(yīng)點(diǎn)是,,C的對(duì)應(yīng)點(diǎn)的坐標(biāo)是.
(1)在平面直角坐標(biāo)系中畫(huà)出△ABC;
(2)寫(xiě)出點(diǎn)的坐標(biāo)是_____________,坐標(biāo)是___________;
(3)此次平移也可看作向________平移了____________個(gè)單位長(zhǎng)度,再向_______平移了______個(gè)單位長(zhǎng)度得到△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).
(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為10的菱形ABCD中,對(duì)角線BD=16,對(duì)角線AC,BD相交于點(diǎn)G,點(diǎn)O是直線BD上的動(dòng)點(diǎn),OE⊥AB于E,OF⊥AD于F.
(1)求對(duì)角線AC的長(zhǎng)及菱形ABCD的面積.
(2)如圖①,當(dāng)點(diǎn)O在對(duì)角線BD上運(yùn)動(dòng)時(shí),OE+OF的值是否發(fā)生變化?請(qǐng)說(shuō)明理由.
(3)如圖②,當(dāng)點(diǎn)O在對(duì)角線BD的延長(zhǎng)線上時(shí),OE+OF的值是否發(fā)生變化?若不變,請(qǐng)說(shuō)明理由;若變化,請(qǐng)?zhí)骄?/span>OE,OF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線AB∥CD,F(xiàn)H平分∠EFD,F(xiàn)G⊥FH,∠AEF=62°,則∠GFC=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某飛機(jī)于空中A處探測(cè)到目標(biāo)C,此時(shí)飛行高度AC=1200m,從飛機(jī)上看地平面指揮臺(tái)B的俯角α=16°31′,則飛機(jī)A與指揮臺(tái)B的距離等于(結(jié)果保留整數(shù))(參考數(shù)據(jù)sin16°31′=0.28,cos16°31′=0.95,tan16°31′=0.30)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com