【題目】如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC。
理由如下:
AD⊥BC于D,EG⊥BC于G,(已知)
∠ADC=∠EGC=90°,( )
AD‖EG,( )
∠1=∠2,( )
=∠3,(兩直線平行,同位角相等)
又∠E=∠1(已知)
= (等量代換)
AD平分∠BAC( )
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)1至2018按一定規(guī)律排列如下表:
平移表中帶陰影的方框,方框中三個數(shù)的和可能是( 。
A. 2019 B. 2018 C. 2016 D. 2013
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,線段AB的端點坐標(biāo)為A(﹣1,2),B(3,1),若直線y=kx﹣2與線段AB有交點,則k的值可能是( 。
A. ﹣3B. ﹣2C. ﹣1D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA是⊙O的切線,A是切點,AC是直徑,AB是弦,連接PB、PC,PC交AB于點E,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)若∠APC=3∠BPC,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,△A1B1C1是△ABC向右平移四個單位長度后得到的,且三個頂點的坐標(biāo)分別為A1(1,1),B1(4,2),C1(3,4).
(1)請畫出△ABC,并寫出點A、B、C的坐標(biāo);
(2)求出△AOA1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC和同一平面內(nèi)的點D.
(1)如圖1,點D在BC邊上,過D作DE∥BA交AC于E,DF∥CA交AB于F.
① 依題意,在圖1中補全圖形;
② 判斷∠EDF與∠A的數(shù)量關(guān)系,并直接寫出結(jié)論(不需證明).
(2)如圖2,點D在BC的延長線上,DF∥CA,∠EDF=∠A.判斷DE與BA的位置關(guān)系,并證明.
(3)如圖3,點D是△ABC外部的一個動點,過D作DE∥BA交直線AC于E,DF∥CA交直線AB于F,直接寫出∠EDF與∠A的數(shù)量關(guān)系(不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某月的月歷表,在此月歷表上可以用一個矩形圈出個位置相鄰的數(shù)(如6,7,8,13,14,15,20,21,22).若圈出的9個數(shù)中,最大數(shù)與最小數(shù)的積為192,則這9個數(shù)的和為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點E是AC的中點,AC=2AB,∠BAC的平分線AD交BC于點D,作AF∥BC,連接DE并延長交AF于點F,連接FC.
求證:四邊形ADCF是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com