【題目】按要求解一元二次方程:
(1)2x2﹣3x+1=0(配方法)
(2)x(x﹣2)+x﹣2=0(因式分解法)
【答案】(1)x1=1,x2=;(2)x1=2,x2=﹣1.
【解析】
試題(1)首先將常數(shù)項移到等號的右側(cè),把二次項系數(shù)化為1,再將等號左右兩邊同時加上一次項系數(shù)一半的平方,即可將等號左邊的代數(shù)式寫成完全平方形式.
(2)方程左邊分解因式后,利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.
解:(1)2x2﹣3x+1=0,
x2﹣x=﹣,
x2﹣x+=﹣+,
(x﹣)2=,
x﹣=±,
∴x1=1,x2=;
(2)x(x﹣2)+x﹣2=0,
分解因式得:(x﹣2)(x+1)=0,
可得x﹣2=0或x+1=0,
解得:x1=2,x2=﹣1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P到圖形Ω(可以是線段、三角形、圓或不規(guī)則圖形等)的距離是指:點(diǎn)P與圖形Ω中所有點(diǎn)連接的線段中最短線段的長度.如圖①中的兩個虛線段PQ的長度都表示點(diǎn)P到圖形Ω的距離.
如圖②,在平面直角坐標(biāo)系xOy中,△ABC的三個頂點(diǎn)坐標(biāo)分別為,點(diǎn)P從原點(diǎn)出發(fā),以每秒1個單位長度的速度向x軸的正方向運(yùn)動了t秒.
(1)當(dāng)t=0時,求點(diǎn)P到△ABC的距離;
(2)當(dāng)點(diǎn)P到△ABC的距離等于線段AP的長度時,求t的范圍;
(3)當(dāng)點(diǎn)P到△ABC的距離大于時,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=(m﹣2)x2+2mx+m+3與x軸有兩個交點(diǎn).
(1)求m的取值范圍;
(2)當(dāng)m取滿足條件的最大整數(shù)時,求拋物線與x軸有兩個交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CDB=30°,CD=6,陰影部分圖形的面積為( )
A. 4πB. 3πC. 2πD. π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的對稱軸為,與軸的一個交點(diǎn)在和之間,其部分圖像如圖所示,則下列結(jié)論:①點(diǎn),,是該拋物線上的點(diǎn),則;②;③(為任意實數(shù)).其中正確結(jié)論的個數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的最大值為4,且該拋物線與軸的交點(diǎn)為,頂點(diǎn)為.
(1)求該二次函數(shù)的解析式及點(diǎn),的坐標(biāo);
(2)點(diǎn)是軸上的動點(diǎn),
①求的最大值及對應(yīng)的點(diǎn)的坐標(biāo);
②設(shè)是軸上的動點(diǎn),若線段與函數(shù)的圖像只有一個公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),已知△ABC三個頂點(diǎn)的坐標(biāo)分別為A(﹣4,0),B(﹣3,﹣3),C(﹣1,﹣3).
(1)畫出△ABC關(guān)于x軸對稱的△ADE(其中點(diǎn)B,C的對稱點(diǎn)分別為點(diǎn)D、E);
(2)畫出△ABC關(guān)于原點(diǎn)成中心對稱的△FGH(其中A、B、C的對稱點(diǎn)分別為點(diǎn)F,G,H).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC,BD交于點(diǎn)O,已知∠AOD=120°,AC=16,則圖中長度為8的線段有( 。
A. 2條 B. 4條 C. 5條 D. 6條
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com