【題目】對(duì)于平面內(nèi)的點(diǎn)和點(diǎn),給出如下定義:點(diǎn)為平面內(nèi)的一點(diǎn),若點(diǎn)使得是以為頂角且小于90°的等腰三角形,則稱點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn).如圖,點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn).在平面直角坐標(biāo)系中,點(diǎn)是坐標(biāo)原點(diǎn).
(1)已知點(diǎn),在點(diǎn),中,是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn)的是___________.
(2)已知點(diǎn),點(diǎn)在直線上,若點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),求實(shí)數(shù)的取值范圍.
(3)點(diǎn)是軸上的動(dòng)點(diǎn),,點(diǎn)是以為圓心,2為半徑的圓上一個(gè)動(dòng)點(diǎn),且滿足.直線與軸和軸分別交于點(diǎn),若線段上存在點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),請(qǐng)直接寫出的取值范圍.
【答案】(1);(2);(3)
【解析】
(1)根據(jù)等腰銳角點(diǎn)的定義即得;
(2)先確定極限位置:直線與圓相切于第四象限及直線過(guò)(0,3)時(shí)b的值,進(jìn)而確定范圍;
(3)分類討論:E點(diǎn)和F點(diǎn)位于線段HK左側(cè);E點(diǎn)和F點(diǎn)位于線段HK右側(cè);利用一線三垂直模型及相似三角形的性質(zhì)確定極限位置t的值,進(jìn)而確定范圍.
(1)∵點(diǎn)P是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),
∴OA=OP=2
如下圖:
當(dāng)時(shí),OP1=2,OP1⊥OA,不成立;
當(dāng)時(shí),過(guò)P2作P2M⊥x軸
∴OM=1,P2M=
∴在中,
∵
∴點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn);
當(dāng)時(shí),
∴點(diǎn)不是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn);
當(dāng)時(shí),過(guò)P4作P4N⊥x軸
∴ON=,P4N=
∴在中,,
∴點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn).
∴點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn)有,
故答案為:
(2)以O為圓心,OA=3為半徑作圓,當(dāng)直線與圓O相切與第四象限時(shí),切點(diǎn)即為點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),如下圖點(diǎn).
由題意,得:OB=-b,OD=
∴在中,
∵
∴
解得:
如上圖:當(dāng)直線過(guò)點(diǎn)E時(shí),,OE⊥OA
∴要使在直線上存在點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),
綜上所述:時(shí),直線上存在點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn) .
(3)如下圖:
當(dāng)在直線左側(cè),時(shí),過(guò)作
∵
∴
∴
∵
∴KO=4,KH=,EH=4-t
∴EG=
∵要使線段上存在點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),則
∴
∴
當(dāng)E點(diǎn)和F點(diǎn)位于線段HK右側(cè)時(shí),即:時(shí),如下圖,過(guò)E作EB⊥EF,過(guò)B作BM⊥x軸,過(guò)點(diǎn)F作FL⊥x軸
當(dāng)時(shí),
∴,
∵,
∴,
∴
∴
將點(diǎn)代入直線得:
解得:
∴當(dāng)時(shí),線段上存在點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn).
∵,
∴,即
綜上所述:時(shí),線段上存在點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)E,F分別在BC和CD上,下列結(jié)論:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正確的序號(hào)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線M:y=-x2+2bx+c與直線l:y=9x+14交于點(diǎn)A,其中點(diǎn)A的橫坐標(biāo)為-2.
(1)請(qǐng)用含有b的代數(shù)式表示c: ;
(2)若點(diǎn)B在直線l上,且B的橫坐標(biāo)為-1,點(diǎn)C的坐標(biāo)為(b,5).
①若拋物線M還過(guò)點(diǎn)B,直接寫出該拋物線的解析式;
②若拋物線M與線段BC恰有一個(gè)交點(diǎn),結(jié)合函數(shù)圖象,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,函數(shù)(x>0)的圖象與直線l1:交于點(diǎn)A,與直線l2:x=k交于點(diǎn)B.直線l1與l2交于點(diǎn)C.
(1) 當(dāng)點(diǎn)A的橫坐標(biāo)為1時(shí),則此時(shí)k的值為 _______;
(2) 橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn). 記函數(shù)(x>0) 的圖像在點(diǎn)A、B之間的部分與線段AC,BC圍成的區(qū)域(不含邊界)為W.
①當(dāng)k=3時(shí),結(jié)合函數(shù)圖像,則區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù)是_________;
②若區(qū)域W內(nèi)恰有1個(gè)整點(diǎn),結(jié)合函數(shù)圖象,直接寫出k的取值范圍:___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,函數(shù)的圖象G經(jīng)過(guò)點(diǎn),直線與y軸交于點(diǎn)B,與圖象G交于點(diǎn)C.
(1)求m的值.
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記圖象G在點(diǎn)A,C之間的部分與線段BA,BC圍成的區(qū)域(不含邊界)為W.
①當(dāng)直線l過(guò)點(diǎn)時(shí),直接寫出區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù).
②若區(qū)域W內(nèi)的整點(diǎn)不少于4個(gè),結(jié)合函數(shù)圖象,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校數(shù)學(xué)興趣小組的同學(xué)要測(cè)量建筑物的高度,如圖,建筑物前有一段坡度為的斜坡,小明同學(xué)站在斜坡上的點(diǎn)處,用測(cè)角儀測(cè)得建筑物屋頂的仰角為,接著小明又向下走了米,剛好到達(dá)坡底處,這時(shí)測(cè)到建筑物屋頂的仰角為,、、、、、在同一平面內(nèi).若測(cè)角儀的高度米,則建筑物的高度約為( ).(精確到0.1米,參考數(shù)據(jù):,,)
A.38.6B.39.0C.40.0D.41.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,點(diǎn)A表示小明家,點(diǎn)B表示學(xué)校.小明媽媽騎車帶著小明去學(xué)校,到達(dá)C處時(shí)發(fā)現(xiàn)數(shù)學(xué)書(shū)沒(méi)帶,于是媽媽立即騎車原路回家拿書(shū)后再追趕小明,同時(shí)小明步行去學(xué)校,到達(dá)學(xué)校后等待媽媽.假設(shè)拿書(shū)時(shí)間忽略不計(jì),小明和媽媽在整個(gè)運(yùn)動(dòng)過(guò)程中分別保持勻速.?huà)寢審?/span>C處出發(fā)x分鐘時(shí)離C處的距離為y1米,小明離C處的距離為y2米,如圖②,折線O-D-E-F表示y1與x的函數(shù)圖像;折線O-G-F表示y2與x的函數(shù)圖像.
(1)小明的速度為 m/min,圖②中a的值為 .
(2)設(shè)媽媽從C處出發(fā)x分鐘時(shí)媽媽與小明之間的距離為y米.當(dāng)12≤x≤30時(shí),求出y與x的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育老師為了解本校九年級(jí)女生1分鐘“仰臥起坐”體育測(cè)試項(xiàng)目的達(dá)標(biāo)情況,從該校九年級(jí)136名女生中,隨機(jī)抽取了20名女生,進(jìn)行了1分鐘仰臥起坐測(cè)試,獲得數(shù)據(jù)如下:
收集數(shù)據(jù):抽取20名女生的1分鐘仰臥起坐測(cè)試成績(jī)(個(gè))如下:
38 46 42 52 55 43 59 46 25 38
35 45 51 48 57 49 47 53 58 49
(1)整理、描述數(shù)據(jù):請(qǐng)你按如下分組整理、描述樣本數(shù)據(jù),把下列表格補(bǔ)充完整:
范圍 | |||||||
人數(shù) |
(說(shuō)明:每分鐘仰臥起坐個(gè)數(shù)達(dá)到49個(gè)及以上時(shí)在中考體育測(cè)試中可以得到滿分)
(2)分析數(shù)據(jù):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率如下表所示:
平均數(shù) | 中位數(shù) | 滿分率 |
46.8 | 47.5 |
得出結(jié)論:①估計(jì)該校九年級(jí)女生在中考體育測(cè)試中1分鐘“仰臥起坐”項(xiàng)目可以得到滿分的人數(shù);
②該中心所在區(qū)縣的九年級(jí)女生的1分鐘“仰臥起坐”總體測(cè)試成績(jī)?nèi)缦拢?/span>
平均數(shù) | 中位數(shù) | 滿分率 |
45.3 | 49 |
請(qǐng)你結(jié)合該校樣本測(cè)試成績(jī)和該區(qū)縣總體測(cè)試成績(jī),為該校九年級(jí)女生的1分鐘“仰臥起坐”達(dá)標(biāo)情況做一下評(píng)估.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com