【題目】如圖,AC與BD相交于點O,∠D=∠C,添加下列哪個條件后,仍不能使△ADO≌△BCO的是( 。
A. AD=BC B. AC=BD C. OD=OC D. ∠ABD=∠BAC
【答案】B
【解析】
由題意可知,在△ADO和△BCO中,已經(jīng)有:∠D=∠C,∠AOD=∠BOC,結(jié)合各選項中添加的條件可知:
A選項中,當(dāng)添加AD=BC后,結(jié)合已有條件,可由“AAS”證得△ADO≌△BCO;
B選項中,當(dāng)添加AC=BD后,結(jié)合已有條件,不能證明△ADO≌△BCO;
C選項中,當(dāng)添加OD=OC后,結(jié)合已有條件,可由“ASA”證得△ADO≌△BCO;
D選項中,當(dāng)添加∠ABD=∠BAC后,結(jié)合已有條件,可先證得△ABD≌△BAC,從而得到AD=BC,再由“AAS”可證得△ADO≌△BCO;
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2﹣2x﹣3與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸x軸交于點D,點E(4,n)在拋物線上.
(1)求直線AE的解析式;
(2)連接CB,點K是線段CB的中點,點M是y軸上的一點,點P為直線CE下方拋物線上的一點,連接PC,PE,當(dāng)△PCE的面積最大時,求KM+PM的最小值;
(3)點G是線段CE的中點,將拋物線y=x2﹣2x﹣3沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為點F,在新拋物線y′的對稱軸上,是否存在一點Q,使得△FGQ為等腰三角形?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點,P為AB延長線上一點,且PC=PE.
(1)求AC、AD的長;
(2)試判斷直線PC與⊙O的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形的頂點與原點重合,點在軸的
正半軸上,點在反比例函數(shù)的圖象上,點的坐標(biāo)為.
求的值.
若將菱形向右平移,使點落在反比例函數(shù)的圖象上,求菱形平移的距離.
怎樣平移可以使點、同時落在第一象限的曲線上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017湖北省鄂州市)小明想要測量學(xué)校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走3米到達A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達C處,測得樹的頂端E的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°.已知A點離地面的高度AB=2米,∠BCA=30°,且B、C、D三點在同一直線上.
(1)求樹DE的高度;
(2)求食堂MN的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,以BC為邊作等邊△BDC,連接AD.
(1)如圖1,直接寫出∠ADB的度數(shù) ;
(2)如圖2,作∠ABM=60°在BM上截取BE,使BE=BA,連接CE,判斷CE與AD的數(shù)量關(guān)系,請補全圖形,并加以證明;
(3)在(2)的條件下,連接DE,AE.若∠DEC=60°,DE=2,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形組成的網(wǎng)格中,的頂點均在格點上,點、的坐標(biāo)分別是,
(1)點在軸上,當(dāng)的值最小時,在圖中畫出點;
(2)求出點的坐標(biāo);
(3)并直接寫出的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,且OE=OD,BE與CD交于點G.
(1)求證:AP=DG;
(2)求線段AP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com