【題目】如圖,已知在△ABC中,AB=AC,給出下列條件,不能使BD=CE的是( )
A.BD和CE分別為AC和AB邊上的中線
B.BD和CE分別為∠ABC和∠ACB的平分線
C.BD和CE分別為AC和AB邊上的高
D.∠ABD=∠BCE
【答案】D
【解析】解 :A、給出BD和CE分別為AC和AB邊上的中線,就能判斷出BD=CE,理由如下 :
∵ BD和CE分別為AC和AB邊上的中線 ,
∴ BE=AB , CD=AC ,
又∵AB=AC ,
∴ BE=CD ,
∵AB=AC ,
∴∠ABC=∠ACB ,
又∵BC=CB ,
∴△BEC≌△CDB ,
∴ BD=CE ;
故A不符合題意;
B、給出BD和CE分別為∠ABC和∠ACB的平分線 ,就能判斷出BD=CE,理由如下:
∵ BD和CE分別為∠ABC和∠ACB的平分線 ,
∴∠DBC=∠ABC ,∠ECB=∠ACB ,
∵AB=AC ,
∴∠ABC=∠ACB ,
∴∠DBC=∠ECB ,
又∵BC=CB ,
∴△BEC≌△CDB ,
∴ BD=CE ;
故B不符合題意;
C、給出BD和CE分別為AC和AB邊上的高,就能判斷出BD=CE,理由如下:
∵BD和CE分別為AC和AB邊上的高 ,
∴∠BEC=∠CDB=90° ,
∵AB=AC ,
∴∠ABC=∠ACB ,
又∵BC=CB ,
∴△BEC≌△CDB ,
∴ BD=CE ;
故c不符合題意;
從而得出只有D符合題意;
故應(yīng)選 :D .
根據(jù)中線的定義得出 BE=AB , CD=AC , 又AB=AC ,從而得出BE=CD ,根據(jù)等邊對(duì)等角得出∠ABC=∠ACB ,從而利用SAS判斷出△BEC≌△CDB ,根據(jù)全等三角形對(duì)應(yīng)邊相等得出BD=CE ; 根據(jù)角平分線的定義得出∠DBC=∠ABC ,∠ECB=∠ACB ,根據(jù)等邊對(duì)等角得出∠ABC=∠ACB ,從而得出∠DBC=∠ECB ,然后利用ASA判斷出△BEC≌△CDB ,根據(jù)全等三角形對(duì)應(yīng)邊相等得出BD=CE ; 根據(jù)垂直的定義得出∠BEC=∠CDB=90° ,,根據(jù)等邊對(duì)等角得出∠ABC=∠ACB ,,然后利用AAS判斷出△BEC≌△CDB ,根據(jù)全等三角形對(duì)應(yīng)邊相等得出BD=CE ;從而得出結(jié)論。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列軸對(duì)稱圖形中,對(duì)稱軸條數(shù)最多的是( )
A. 線段 B. 角 C. 等腰三角形 D. 等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD平分∠CAB,則下列結(jié)論中:①AD⊥BC; ②AD=BC;③∠B=∠C; ④BD=CD。正確的有( )
A.①②③
B.②③④
C.①②④
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,頂點(diǎn)為點(diǎn)P,經(jīng)過(guò)B、C兩點(diǎn)的直線為y=﹣x+3.
(1)求該二次函數(shù)的關(guān)系式;
(2)在該拋物線的對(duì)稱軸上是否存在點(diǎn)M,使以點(diǎn)C、P、M為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接AC,在x軸上是否存在點(diǎn)Q,使以點(diǎn)P、B、Q為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若將點(diǎn)A(1,3)向左平移2個(gè)單位,再向下平移4個(gè)單位得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為( )
A.(﹣1,0)
B.(﹣1,﹣1)
C.(﹣2,0)
D.(﹣2,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若線段CD是由線段AB平移得到的,點(diǎn)A(﹣1,3)的對(duì)應(yīng)點(diǎn)為C(2,2),則點(diǎn)B(﹣3,﹣1)的對(duì)應(yīng)點(diǎn)D的坐標(biāo)是( )
A. (0,﹣2) B. (1,﹣2) C. (﹣2,0) D. (4,6)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com