如圖所示,以Rt△ABC的直角邊AB為直徑的⊙O交斜邊AC于點(diǎn)E,點(diǎn)D是BC邊的中點(diǎn),連接ED.
(1)試說(shuō)明:ED是⊙O的切線;
(2)若⊙O 直徑為6,線段BC長(zhǎng)為8,求AE的長(zhǎng).

【答案】分析:(1)可求得∠DEO=90°,即可得到DE是⊙O的切線;
(2)根據(jù)勾股定理求出AB,以及利用三角形面積求出BE,進(jìn)而得出AE的長(zhǎng).
解答:解:(1)證明:連接BE,EO;
∵AB為⊙O直徑.
∴∠AEB=90°.
∴△CEB為直角三角形.
∵D為BC中點(diǎn);
∴DC=BD=ED.
∴∠DEB=∠EBD.
∵EO=OB;
∴∠OEB=∠OBE.
∴∠OEB+∠DEB=∠OBE+∠DBE=∠ABC=90°.
即∠DEO=90°.
∴DE與⊙O相切于點(diǎn)E.

(2)解:∵BE⊥AC,
∴BE×AC=AB×BC,
∵AB=6,BC=8,
∴AC=10,
∴BE=4.8,
∴AE==
點(diǎn)評(píng):此題主要考查了切線的判定方法以及勾股定理和三角形面積求法應(yīng)用,根據(jù)已知得出BE的長(zhǎng)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖所示,以Rt△ABC的直角邊AB為直徑作圓O,與斜邊交于點(diǎn)D,E為BC邊上的中點(diǎn),連接DE.
(1)求證:DE是⊙O的切線;
(2)連接OE,AE,當(dāng)∠CAB為何值時(shí),四邊形AOED是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,以Rt△ABC的直角邊AB為直徑作圓O,與斜邊交于點(diǎn)D,E為BC邊上的中點(diǎn),連接DE.
(1)求證:DE是⊙O的切線;
(2)連接OE,AE,當(dāng)∠CAB為何值時(shí),四邊形AOED是平行四邊形?并在此條件下求sin∠CAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,以Rt△ABC的一條直角邊AB為直徑作⊙O,與AC交于點(diǎn)F,在AB的延長(zhǎng)線上取一精英家教網(wǎng)點(diǎn)E,連接EF與BC交于點(diǎn)D,且使得DF=CD.
(1)求證:FE是⊙O的切線;
(2)如果sin∠A=
1
2
,AE=
3
,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,以Rt△ABC的直角邊AB為直徑的⊙O交斜邊AC于點(diǎn)E,點(diǎn)D是BC邊的中點(diǎn),連接ED.
(1)試說(shuō)明:ED是⊙O的切線;
(2)若⊙O 直徑為6,線段BC長(zhǎng)為8,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,以Rt△ABC的三邊為直徑分別向外作三個(gè)半圓S1,S2,S3,若S2=32π;S3=18π,則斜邊上半圓的面積S1=
50π
50π

查看答案和解析>>

同步練習(xí)冊(cè)答案