【題目】已知三個頂點的坐標分別.
(1)畫出;
(2)以B為位似中心,將放大到原來的2倍,在右圖的網(wǎng)格圖中畫出放大后的圖形△;
(3)寫出點A的對應(yīng)點的坐標:___.
【答案】(1)見解析;(2)見解析;(3)(3,1)
【解析】
(1)根據(jù)A(0,2)、B(3,3)、C(2,1).在坐標系中找出連接即可;
(2)根據(jù)把原三角形的三邊對應(yīng)的縮小或放大一定的比例即可得到對應(yīng)的相似圖形,在改變的過程中保持形狀不變(大小可變)即可得出答案.
(3)利用(2)中圖象,直接得出答案.
(1)根據(jù)A(0,2)、B(3,3)、C(2,1).
在坐標系中找出連接即可;
(2)把原三角形的三邊對應(yīng)的縮小或放大一定的比例即可得到對應(yīng)的相似圖形。
所畫圖形如下所示:它的三個對應(yīng)頂點的坐標分別是:(3,1)、(3,3)、(1,1).
(3)利用(2)中圖象,直接得出答案.
故答案為:(3,1)
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應(yīng)點C′的坐標為( 。
A.(,0)B.(2,0)C.(,0)D.(3,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程。
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若△ABC的兩邊AB、AC的長是方程的兩個實數(shù)根,第三邊BC的長為5。當△ABC是等腰三角形時,求k的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點在的直徑的延長線上,點在上,且AC=CD,∠ACD=120°.
(1)求證:是的切線;
(2)若的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖△ABC中,以AB為直徑的⊙O與AC,BC的交點分別為D,E.
(1)∠A=68°,求∠CED的大小.
(2)當DE=BE時,證明:△ABC為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題發(fā)現(xiàn))如圖1,半圓O的直徑AB=10,點P是半圓O上的一個動點,則△PAB的面積最大值是 ;
(問題探究)如圖2所示,AB、AC、是某新區(qū)的三條規(guī)劃路,其中AB=6km,AC=3km,∠BAC=60°,所對的圓心角為60°.新區(qū)管委會想在路邊建物資總站點P,在AB、AC路邊分別建物資分站點E、F,即分別在、線段AB和AC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按P→E→F→P的路徑進行運輸,因此,要在各物資站點之間規(guī)劃道路PE、EF和FP.顯然,為了快捷環(huán)保和節(jié)約成本,就要使線段PE、EF、FP之和最短(各物資站點與所在道路之間的距離、路寬均忽略不計).可求得△PEF周長的最小值為 km;
(拓展應(yīng)用)如圖3是某街心花園的一角,在扇形OAB中,∠AOB=90°,OA=12米,在圍墻OA和OB上分別有兩個入口C和D,且AC=4米,D是OB的中點,出口E在上.現(xiàn)準備沿CE、DE從入口到出口鋪設(shè)兩條景觀小路,在四邊形CODE內(nèi)種花,在剩余區(qū)域種草.
①出口E設(shè)在距直線OB多遠處可以使四邊形CODE的面積最大?最大面積是多少?(小路寬度不計)
②已知鋪設(shè)小路CE所用的普通石材每米的造價是200元,鋪設(shè)小路DE所用的景觀石材每米的造價是400元.
請問:在上是否存在點E,使鋪設(shè)小路CE和DE的總造價最低?若存在,求出最低總造價和出口E距直線OB的距離;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在足夠大的空地上有一段長為30米的舊墻MN,某人利用舊墻和木欄圍成一個矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了80米木欄,設(shè)這個菜園垂直于墻的一邊長為x米.
(1)若平行于墻的一邊長為y米,寫出y與x的函數(shù)表達式子,并求出自變量x的取值范圍;
(2)垂直于墻的一邊長為多少米時,這個矩形菜園ABCD的面積最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點 O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點,的長為( )
A.B.C.πD.2π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有5張不透明的卡片,除正面上的圖案不同外,其他均相同.將這5張卡片背面向上洗勻后放在桌面上.
(1)從中隨機抽取1張卡片,卡片上的圖案是中心對稱圖形的概率為_____.
(2)若從中隨機抽取1張卡片后不放回,再隨機抽取1張,請用畫樹狀圖或列表的方法,求兩次所抽取的卡片恰好都是軸對稱圖形的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com