【題目】在平面直角坐標(biāo)系中,點(diǎn)A(0,6),B(8,0),AB=10,如圖作∠DBO=∠ABO,∠CAy=∠BAO,BD交y軸于點(diǎn)E,直線DO交AC于點(diǎn)C.

(1)①求證:△ACO≌△EDO;②求出線段AC、BD的位置關(guān)系和數(shù)量關(guān)系;

(2)動(dòng)點(diǎn)P從A出發(fā),沿A﹣O﹣B路線運(yùn)動(dòng),速度為1,到B點(diǎn)處停止運(yùn)動(dòng);動(dòng)點(diǎn)Q從B出發(fā),沿B﹣O﹣A運(yùn)動(dòng),速度為2,到A點(diǎn)處停止運(yùn)動(dòng).二者同時(shí)開(kāi)始運(yùn)動(dòng),都要到達(dá)相應(yīng)的終點(diǎn)才能停止.在某時(shí)刻,作PE⊥CD于點(diǎn)E,QF⊥CD于點(diǎn)F.問(wèn)兩動(dòng)點(diǎn)運(yùn)動(dòng)多長(zhǎng)時(shí)間時(shí)△OPE與△OQF全等?

【答案】(1)AC∥BD,AC=BD﹣10;(2)當(dāng)兩動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為2、、12秒時(shí),△OPE與OQF全等.

【解析】

(1)①根據(jù)全等三角形的判定定理ASA證得結(jié)論;

②利用①中全等三角形的性質(zhì)得到:ACBD,AC=BD-10;

(2)設(shè)運(yùn)動(dòng)的時(shí)間為t秒,(i)當(dāng)點(diǎn)P、Q分別在y軸、x軸上時(shí)(ii)當(dāng)點(diǎn)P、Q都在y軸上時(shí),(iii)當(dāng)點(diǎn)Px軸上,Qy軸時(shí)若二者都沒(méi)有提前停止,當(dāng)點(diǎn)Q提前停止時(shí),列方程即可得到結(jié)論.

(1)①如圖,

∵∠DBO=ABO,OBAE,

∴∠BAO=BEO,

AB=BE,

AO=OE,

∵∠CAy=BAO,

∴∠CAy=BEO,

∴∠DEO=CAO

ACOEDO中,

,

∴△ACO≌△EDO(ASA);

②由①知,ACO≌△EDO,

∴∠C=D,AC=DE,

ACBD,AC=BD﹣10;

(2)設(shè)運(yùn)動(dòng)的時(shí)間為t秒,

(i)當(dāng)點(diǎn)P、Q分別在y軸、x軸上時(shí)PO=QO得:6﹣t=8﹣2t,解得t=2(秒),

(ii)當(dāng)點(diǎn)P、Q都在y軸上時(shí)PO=QO得:6﹣t=2t﹣8,解得t=(秒),

(iii)當(dāng)點(diǎn)Px軸上,Qy軸時(shí)若二者都沒(méi)有提前停止,則PO=QO得:t﹣6=2t﹣8,解得t=2(秒)不合題意;

當(dāng)點(diǎn)Q提前停止時(shí),有t﹣6=6,解得t=12(秒),

綜上所述:當(dāng)兩動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為2、、12秒時(shí),OPEOQF全等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市記者為了了解“霧霾天氣的主要成因”,隨機(jī)調(diào)查了該市部分市民,并對(duì)調(diào)查結(jié)果進(jìn)行整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:

組別

觀點(diǎn)

頻數(shù)(人數(shù))

A

大氣氣壓低,空氣不流動(dòng)

80

B

地面灰塵大,空氣濕度低

m

C

汽車尾氣排放

n

D

工廠造成的污染

120

E

其他

60

請(qǐng)根據(jù)圖表中提供的信息解答下列問(wèn)題:

(1)填空:m= , n=
(2)若該市人口約有100萬(wàn)人,請(qǐng)你計(jì)算其中持D組“觀點(diǎn)”的市民人數(shù)是多少萬(wàn)人?
(3)若在這次接受調(diào)查的市民中,隨機(jī)抽查一人,則此人持C組“觀點(diǎn)”的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論: ①b2﹣4c>0;
②b+c+1=0;
③3b+c+6=0;
④當(dāng)1<x<3時(shí),x2+(b﹣1)x+c<0.
其中正確的個(gè)數(shù)為(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為直線AB上的一點(diǎn),COE是直角,OF平分∠AOE(圖中所說(shuō)的角都是小于平角的角).

(1)如圖1,若∠COF=28°,則∠BOE=______°;若∠COF=則∠BOE=_______;∠BOE與∠COF的數(shù)量關(guān)系為_________;

(2)將∠COE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)到如圖2所示的位置時(shí),(1)中∠BOE和∠COF的數(shù)量關(guān)系否仍然成立?若成立,請(qǐng)說(shuō)明理由?若不成立,求出∠BOE與∠COF的數(shù)量關(guān)系;

(3)當(dāng)∠COE繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖3的位置時(shí),(1)中∠BOE和∠COF的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)求出∠BOE與∠COF的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x24x+2)(x24x+6+4進(jìn)行因式分解的過(guò)程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問(wèn)題:

1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填徹底不徹底)若不徹底,請(qǐng)直接寫(xiě)出因式分解的最后結(jié)果_________

3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x22x)(x22x+2+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,

(1)以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧交AD于點(diǎn)F,再分別以B、F為圓心,大于 BF長(zhǎng)為半徑畫(huà)弧,兩弧交于一點(diǎn)P,連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF;
(2)四邊形ABEF是(選填矩形、菱形、正方形、無(wú)法確定),說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D,E,F在邊BC上,點(diǎn)P在線段AD上,若PEAB,∠PFD=C,點(diǎn)DABAC的距離相等.求證:點(diǎn)DPEPF的距離相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量校園里水平地面上的一棵大樹(shù)的高度,數(shù)學(xué)綜合實(shí)踐活動(dòng)小組的同學(xué)們開(kāi)展如下活動(dòng):某一時(shí)刻,測(cè)得身高1.6m的小明在陽(yáng)光下的影長(zhǎng)是1.2m,在同一時(shí)刻測(cè)得這棵大樹(shù)的影長(zhǎng)是3.6m,則此樹(shù)的高度是m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC和DEB中,已知AB=DE,還需添加兩個(gè)條件才能使ABC≌△DEC,不能添加的一組條件是

A.BC=EC,B=E B.BC=EC,AC=DC

C.BC=DC,A=D D.B=E,A=D

查看答案和解析>>

同步練習(xí)冊(cè)答案