1.下列分式中是最簡(jiǎn)分式的是(  )
A.$\frac{{x}^{2}-xy}{2x-xy}$B.$\frac{{x}^{2}-9}{x-3}$
C.$\frac{2}{{x}^{2}-1}$D.$\frac{{x}^{2}+10x+25}{{x}^{2}-25}$

分析 最簡(jiǎn)分式的標(biāo)準(zhǔn)是分子,分母中不含有公因式,不能再約分.判斷的方法是把分子、分母分解因式,并且觀察有無(wú)互為相反數(shù)的因式,這樣的因式可以通過(guò)符號(hào)變化化為相同的因式從而進(jìn)行約分.

解答 解:A、$\frac{{x}^{2}-xy}{2x-xy}=\frac{x-y}{2-y}$不是最簡(jiǎn)分式,錯(cuò)誤;
B、$\frac{{x}^{2}-9}{x-3}=x+3$不是最簡(jiǎn)分式,錯(cuò)誤;
C、$\frac{2}{{x}^{2}-1}$的分子、分母都不能再分解,且不能約分,是最簡(jiǎn)分式,正確;
D、$\frac{{x}^{2}+10x+25}{{x}^{2}-25}=\frac{x+5}{x-5}$不是最簡(jiǎn)分式,錯(cuò)誤;
故選C.

點(diǎn)評(píng) 此題考查最簡(jiǎn)分式問(wèn)題,關(guān)鍵是根據(jù)分式的化簡(jiǎn)過(guò)程,首先要把分子分母分解因式,互為相反數(shù)的因式是比較易忽視的問(wèn)題.在解題中一定要引起注意.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,四邊形OACB中,CM⊥OA,∠A+∠B=180°,OA+OB=2OM,CA=CB.求證:OC平分∠AOB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若3x2n-3+2=5是關(guān)于x的一元一次方程,則(-2)n=4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若9x2+kxy+4y2是一個(gè)完全平方式,則k的值為( 。
A.6B.±6C.12D.±12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知y=1是方程2-$\frac{1}{3}$(m-y)=2y的解,那么x的方程m(x-3)=m(2x-5)的解是x=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.計(jì)算題:
(1)(-a23b2÷2a4b
(2)(x+3)2+(x+2)(x-2)-2x2
(3)(x2-1)•($\frac{x-1}{x+1}$+$\frac{x+1}{x-1}$-$\frac{1}{{x}^{2}-1}$)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.為響應(yīng)市政府“創(chuàng)建國(guó)家森林城市”的號(hào)召,某小區(qū)計(jì)劃購(gòu)進(jìn)A、B兩種樹(shù)苗共17棵,已知A種樹(shù)苗每棵80元,B種樹(shù)苗每棵60元.若購(gòu)進(jìn)A、B兩種樹(shù)苗剛好用去1220元,問(wèn)購(gòu)進(jìn)A、B兩種樹(shù)苗各多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.計(jì)算或解方程:
(1)|-3|-(π-1)0-$\sqrt{4}$
(2)(2x+1)3=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若直線(xiàn)y=-x+b不經(jīng)過(guò)第三象限,則b的取值范圍是b≥0.

查看答案和解析>>

同步練習(xí)冊(cè)答案