【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>

(1)(2x3)2160;    

(2)(x2)23x(x2)0.

3x24x2

4x(x+4)=8x+12

【答案】1x1=, x2= -;2x1=2, x2=-1;3x1=-2,x2=-2.4x1=6, x2=-2

【解析】

1)方程運用因式分解法求解即可;

2)方程先提取公因式(x-2)后化成兩個一元一次方程后求解即可;

3)運用配方法求解即可;

4)先把方程轉(zhuǎn)化為一般形式后,再運用因式分解法求解即可.

(1)(2x3)2160;

(2x+3+4)(2x+3-4)=0

2x+7=0,2x-1=0,

x1=, x2= -;    

(2)(x2)23x(x2)0.

(x-2)(x-2-3x)=0,

x-2=0;-2x-2=0,

x1=2, x2=-1;

3x24x2

x24x+42+4

(x+2)2=6,

x+2=±

x1=-2,x2=-2;

4x(x+4)=8x+12

x2-4x-12=0

(x-6)(x+2)=0

x-6=0,x+2=0,

x1=6, x2=-2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)÷7;

(2);

(3)

(4);

(5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2020年元月的日歷表中,某一天對應(yīng)的號數(shù)的上、下、左、右四個數(shù)的和為.

1)如果某一天是號,請用含 的代數(shù)式把表示出來;

2的值可能是96嗎?如果可能,求出這一天上、下、左、右四天,如果不可能,請說明理由;

3的值可能是28嗎?如果可能,求出這一天上、下、左、右四天,如果不可能,請說明理由.

星期日

星期一

星期二

星期三

星期四

星期五

星期六

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第一象限C,D兩點,坐標軸交于A、B兩點,連結(jié)OC,OD(O是坐標原點).

(1)利用圖中條件,求反比例函數(shù)的解析式和m的值;

(2)求DOC的面積.

(3)雙曲線上是否存在一點P,使得POC和POD的面積相等?若存在,給出證明并求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直角三角形ABC中,∠ACB=90°,EAB上一點,且CE=EBED⊥CBD,則下列結(jié)論中不一定成立的是( 。

A.AE=BEB.CE=ABC.∠CEB=2∠AD.AC=AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2(a≠0)與一次函數(shù)y=kx-2的圖象相交于A.B兩點,如圖所示,其中A(-1,-1).

(1)求二次函數(shù)和一次函數(shù)的解析式;

(2)求△OAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】判斷下列關(guān)于的方程,哪些是整式方程?這些整式方程分別是一元幾次方程?

1

2

3

4

5

6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知拋物線y=x2x3與x軸交于A和B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D

(1)求出點A,B,D的坐標;

(2)如圖1,若線段OB在x軸上移動,且點O,B移動后的對應(yīng)點為O,B.首尾順次連接點O、B、D、C構(gòu)成四邊形OBDC,請求出四邊形OBDC的周長最小值.

(3)如圖2,若點M是拋物線上一點,點N在y軸上,連接CM、MN.當CMN是以MN為直角邊的等腰直角三角形時,直接寫出點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學興趣小組幾名同學到商場調(diào)查發(fā)現(xiàn),一種純牛奶進價為每箱40元,廠家要求售價在4070元之間,若以每箱70元銷售平均每天銷售30箱,價格每降低1元平均每天可多銷售3箱.

1)現(xiàn)該商場要保證每天盈利900元,同時又要使顧客得到實惠,那么每箱售價為多少元?

2)若每天盈利為W元,請利用配方法直接寫出每箱售價為多少元時,每天盈利最多.

查看答案和解析>>

同步練習冊答案