【題目】如圖,是的直徑,點在上,過點作的切線,延長到,使,連接,,與交于點.若的半徑為,,則的外接圓的半徑為________.
【答案】
【解析】
根據(jù)圓周角定理得∠ACB=90°,而BC=CD,則可判斷△ABD為等腰三角形,得到AD=AB=6,所以AE=AD﹣DE=4,再根據(jù)切線的性質得OC⊥CM,接著證明OC∥AD,則CM⊥AD,所以∠AEC=90°,然后證明Rt△ACE∽Rt△ADC,利用相似比計算出AC=2,最后根據(jù)圓周角定理的推論可確定△AEC的外接圓的半徑.
∵AB是⊙O的直徑,∴∠ACB=90°,即AC⊥BD.
∵BC=CD,∴△ABD為等腰三角形,∴AD=AB=6,∴AE=AD﹣DE=6﹣2=4.
∵CM為切線,∴OC⊥CM.
∵OA=OB,CD=CB,∴OC為△BAD的中位線,∴OC∥AD,∴CM⊥AD,∴∠AEC=90°.
∵∠CAE=∠DAC,∴Rt△ACE∽Rt△ADC,∴=,即=,∴AC=2.
∵△AEC為直角三角形,AC為斜邊,∴△AEC的外接圓的半徑=AC=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0),下列結論:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤當x>﹣1時,y>0.其中正確結論的個數(shù)是( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了提高學生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆“漢字聽寫大賽”,學生經選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學生成績?yōu)?/span>(分),且,將其按分數(shù)段分為五組,繪制出以下不完整表格:
組別 | 成績(分) | 頻數(shù)(人數(shù)) | 頻率 |
一 | 2 | 0.04 | |
二 | 10 | 0.2 | |
三 | 14 | b | |
四 | a | 0.32 | |
五 | 8 | 0.16 |
請根據(jù)表格提供的信息,解答以下問題:
(1)本次決賽共有 名學生參加;
(2)直接寫出表中a= ,b= ;
(3)請補全下面相應的頻數(shù)分布直方圖;
(4)若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形ABCD中,AB=AD. ∠B+∠ADC=180°,點E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關系.
圖1 圖2 圖3
(1)思路梳理
將△ABE繞點A逆時針旋轉至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線. 易證△AFG ,故EF,BE,DF之間的數(shù)量關系為 ;
(2)類比引申
如圖2,在圖1的條件下,若點E,F(xiàn)由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關系,并給出證明.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°. 若BD=1,EC=2,則DE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知≌,且、、、四點在同一直線上.
(1)在圖1中,請你用無刻度的直尺作出線段的垂直平分線;
(2)在圖2中,請你用無刻度的直尺作出線段的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=30°,∠B=60°,CF平分∠ACB.
(1)求∠ACE的度數(shù).
(2)若CD⊥AB于點D,∠CDF=75°,求證:△CFD是直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知中,厘米,、分別從點、點同時出發(fā),沿三角形的邊運動,已知點的速度是1厘米/秒的速度,點的速度是2厘米/秒,當點第一次到達點時,、同時停止運動.
(1)、同時運動幾秒后,、兩點重合?
(2)、同時運動幾秒后,可得等邊三角形?
(3)、在邊上運動時,能否得到以為底邊的等腰,如果存在,請求出此時、運動的時間?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB.添加一個條件,不能使四邊形DBCE成為矩形的是( )
(A)AB=BE (B)BE⊥DC (C)∠ADB=90° (D)CE⊥DE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象過兩點.
(1)求直線的函數(shù)表達式
(2)直線交軸于點為直線上一動點
①求的最小值;
②是直線上任意一點,為直線上另一動點,若是以為直角邊長的等腰直角三角形,求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com