【題目】已知AB是⊙O的直徑,PB是⊙O的切線,C是⊙O上的點(diǎn),ACOP,M是直徑AB上的動(dòng)點(diǎn),A與直線CM上的點(diǎn)連線距離的最小值為d,B與直線CM上的點(diǎn)連線距離的最小值為f.

(1)求證:PC是⊙O的切線;

(2)設(shè)OP=AC,求∠CPO的正弦值;

(3)設(shè)AC=9,AB=15,求d+f的取值范圍.

【答案】(1)詳見(jiàn)解析;(2);(3)

【解析】

(1)連接OC,根據(jù)等腰三角形的性質(zhì)得到∠A=OCA,由平行線的性質(zhì)得到∠A=BOP,ACO=COP,等量代換得到∠COP=BOP,由切線的性質(zhì)得到∠OBP=90°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)過(guò)OODACD,根據(jù)相似三角形的性質(zhì)得到CDOP=OC2,根據(jù)已知條件得到,由三角函數(shù)的定義即可得到結(jié)論;
(3)連接BC,根據(jù)勾股定理得到BC==12,當(dāng)MA重合時(shí),得到d+f=12,當(dāng)MB重合時(shí),得到d+f=9,于是得到結(jié)論.

1)連接OC,


OA=OC,
∴∠A=OCA,
ACOP
∴∠A=BOP,∠ACO=COP,
∴∠COP=BOP,
PB是⊙O的切線,AB是⊙O的直徑,
∴∠OBP=90°,
在△POC與△POB中,

,
∴△COP≌△BOP
∴∠OCP=OBP=90°,
PC是⊙O的切線;
2)過(guò)OODACD,
∴∠ODC=OCP=90°,CD=AC
∵∠DCO=COP,
∴△ODC∽△PCO
,
CDOP=OC2
OP=AC,
AC=OP
CD=OP,
OPOP=OC2

sinCPO=;
3)連接BC,
AB是⊙O的直徑,
ACBC,
AC=9,AB=15,
BC==12
當(dāng)CMAB時(shí),
d=AM,f=BM
d+f=AM+BM=15,
當(dāng)MB重合時(shí),
d=9,f=0
d+f=9,
d+f的取值范圍是:9≤d+f≤15

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊OAB的邊長(zhǎng)為2,點(diǎn)Bx軸上,反比例函數(shù)的圖象經(jīng)過(guò)A點(diǎn),將OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α(0°<α<360°),使點(diǎn)A落在雙曲線上,則α________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:AB⊙O的直徑,C⊙O上一點(diǎn),如圖,AB=12,BC=4.BH⊙O相切于點(diǎn)B,過(guò)點(diǎn)CBH的平行線交AB于點(diǎn)E.

(1)CE的長(zhǎng);

(2)延長(zhǎng)CEF,使EF=,連接BF并延長(zhǎng)BF⊙O于點(diǎn)G,求BG的長(zhǎng);

(3)在(2)的條件下,連接GC并延長(zhǎng)GCBH于點(diǎn)D,求證:BD=BG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①所示是邊長(zhǎng)為的大正方形中有一個(gè)邊長(zhǎng)為的小正方形.圖②是由圖①中陰影部分拼成的一個(gè)長(zhǎng)方形.

1)設(shè)圖①中陰影部分的面積為,圖②中陰影部分的面積為,請(qǐng)用含的式子表示: , ;(不必化簡(jiǎn))

2)以上結(jié)果可以驗(yàn)證的乘法公式是 ;

3)利用(2)中得到的公式,計(jì)算:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為等邊三角形,為射線上一點(diǎn),為射線上一點(diǎn),.

1)如圖1,當(dāng)點(diǎn)的延長(zhǎng)線上且時(shí),的中線嗎?請(qǐng)說(shuō)明理由;

2)如圖2,當(dāng)點(diǎn)的延長(zhǎng)線上時(shí),寫出之間的數(shù)量關(guān)系,請(qǐng)說(shuō)明理由;

3)如圖3,當(dāng)點(diǎn)在線段的延長(zhǎng)線上,點(diǎn)在線段上時(shí),請(qǐng)直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一定能確定ABC≌△DEF的條件是(

A.AB=DE,BC=EF,A=DB.A=E,AB=EF,B=D

C.A=D,AB=DE,B=ED.A=D,B=E,C=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜邊上的中線與斜邊的比為;⑤兩個(gè)相似多邊形的面積比為,則周長(zhǎng)的比為.”中,正確的個(gè)數(shù)有( )個(gè)

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的一元二次方程

若該方程有實(shí)數(shù)根,求的取值范圍.

若該方程一個(gè)根為,求方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,則的值是________

查看答案和解析>>

同步練習(xí)冊(cè)答案