【題目】已知:⊙O1與⊙O2相交于A、B兩點(diǎn),且O2在⊙O1上.
(1)如圖1,AD是⊙O2的直徑,連DB并延長交⊙O1于點(diǎn)C,求證:CO2⊥AD.
(2)如圖2,若AD是⊙O2的非直徑的弦,直線DB交⊙O1于點(diǎn)C,則(1)中的結(jié)論是否成立,為什么?請加以證明.
【答案】(1)見解析;(2)見解析.
【解析】
(1) 連接AB.根據(jù)直徑所對的圓周角是直角,得∠ABD=90°;根據(jù)等弧所對的圓周角相等,得∠A=∠C,再進(jìn)一步根據(jù)兩角對應(yīng)相等,得△ABD∽△CO2D,從而證明結(jié)論;
(2) 連接AO2并延長交圓于E,連接DE、AB.根據(jù)直徑所對的圓周角是直角,得∠ADE=90°;根據(jù)等弧所對的圓周角相等,得∠C=∠1=∠2,從而證明∠ADC+∠C=90°,證明結(jié)論.
(1) 連結(jié)AB,如圖1
∵AD是⊙O2的直徑,
∴∠ABD=90°(直徑所對的圓周角是直角),
∴∠BAD+∠BDA=180°-90°=90°(三角形內(nèi)角和定理),
又∵∠C=∠A(同弧所對圓周角相等),
∴△ABD∽△CO2D,
∴∠ABD=∠CO2D=90°,
即CO2⊥AD.
(2)(1)中的結(jié)論仍成立.證明如下:
連接AO2并延長交圓于E,延長CO2交AD于H,連接DE、AB,如圖2
∵AE是圓的直徑,
∴∠ADE=90°(直徑所對的圓周角是直角),
∴∠ADC+∠2=90°,
又∵∠C=∠1=∠2(同弧所對圓周角相等),
∴∠ADC+∠C=90°(等量替換),
∴∠AHD=180°-90°=90°(三角形內(nèi)角和定理),
則CO2⊥AD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為r(r>0).給出如下定義:若平面上一點(diǎn)P到圓心O的距離d,滿足,則稱點(diǎn)P為⊙O的“隨心點(diǎn)”.
(1)當(dāng)⊙O的半徑r=2時(shí),A(3,0),B(0,4),C(﹣,2),D(,﹣)中,⊙O的“隨心點(diǎn)”是_____;
(2)若點(diǎn)E(4,3)是⊙O的“隨心點(diǎn)”,求⊙O的半徑r的取值范圍;
(3)當(dāng)⊙O的半徑r=2時(shí),直線y=x+b(b≠0)與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,若線段MN上存在⊙O的“隨心點(diǎn)”,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=AE.若AE平分∠DAB,∠EAC=25°,則∠B=_____,∠AED的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“2018杭州馬拉松競賽”的個(gè)人競賽項(xiàng)目共有三項(xiàng):A.“馬拉松”,B.“半程馬拉松”,C.“迷你馬拉松”.小明和小剛參加了該賽事的志愿者服務(wù)工作,組委會隨機(jī)將志愿者分配到三個(gè)項(xiàng)目組.
(1)小明被分配到“迷你馬拉松”項(xiàng)目組的概率為______.
(2)請用畫樹狀圖或列表的方法,求出小明和小剛被分配到同一項(xiàng)目組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程3x2+3(a+b)x+4ab=0的兩個(gè)實(shí)數(shù)根x1、x2滿足關(guān)系式:x1(x1+1)+x2(x2+1)=(x1+1)(x2+1).判斷(a+b)2≤4是否正確,若正確,請加以證明;若不正確,請舉一反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】修建隧道可以方便出行.如圖:,兩地被大山阻隔,由地到地需要爬坡到山頂地,再下坡到地.若打通穿山隧道,建成直達(dá),兩地的公路,可以縮短從地到地的路程.已知:從到坡面的坡度,從到坡面的坡角,公里.
(1)求隧道打通后從到的總路程是多少公里?(結(jié)果保留根號)
(2)求隧道打通后與打通前相比,從地到地的路程約縮短多少公里?(結(jié)果精確到0.01)(,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A'B'C,M是BC的中點(diǎn),P是A'B'的中點(diǎn),連接PM.若BC=2,∠BAC=30°,則線段PM的最大值是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1;2,△OAC與△CBD的面積之和為,則k的值為( )
A.2B.3C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某中學(xué)一次趣味運(yùn)動會50米托盤乒乓球接力項(xiàng)目中(即乒乓球放入托盤內(nèi),參賽隊(duì)員用手托住托盤運(yùn)送乒乓球),初一(1)班和初一(2)班同臺競技,某時(shí)刻,1班的小敏和2班的小文分別位于50米賽道的起點(diǎn)地和終點(diǎn)地,他們同時(shí)出發(fā),相向而行,分別以各自的速度勻速直線奔跑,過程中的某時(shí)刻,小敏不慎將乒乓球落在地(、、在同一直線上且乒乓球落在地后不再移動),第6秒時(shí)小敏才發(fā)現(xiàn)并迅速掉頭以原速去撿乒乓球,撿到球后,小敏將速度提升到小文速度的兩倍迅速往地勻速跑去,小敏掉頭和撿球的時(shí)間忽略不計(jì),如圖是兩人之間的距離(米)與小敏出發(fā)的時(shí)間(秒)之間的函數(shù)圖象,則當(dāng)小敏到達(dá)地時(shí),小文離地還有________米.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com