【題目】把一個(gè)足球垂直水平地面向上踢,時(shí)間為t(秒)時(shí)該足球距離地面的高度h(米)適用公式h=20t﹣5t2(0≤t≤4).
(1)當(dāng)t=3時(shí),求足球距離地面的高度;
(2)當(dāng)足球距離地面的高度為10米時(shí),求t;
(3)若存在實(shí)數(shù)t1,t2(t1≠t2)當(dāng)t=t1或t2時(shí),足球距離地面的高度都為m(米),求m的取值范圍.
【答案】(1)、15米;(2)、t=2+或t=2-;(3)、0≤m<20
【解析】
試題分析:(1)、將t=3代入解析式可得;(2)、根據(jù)h=10可得關(guān)于t的一元二次方程,解方程即可;(3)、由題意可得方程20t﹣t2=m 的兩個(gè)不相等的實(shí)數(shù)根,由根的判別式即可得m的范圍.
試題解析:(1)、當(dāng)t=3時(shí),h=20t﹣5t2=20×3﹣5×9=15(米),
∴當(dāng)t=3時(shí),足球距離地面的高度為15米;
(2)、∵h=10, ∴20t﹣5t2=10,即t2﹣4t+2=0, 解得:t=2+或t=2﹣,
故經(jīng)過2+或2﹣時(shí),足球距離地面的高度為10米;
(3)、∵m≥0,由題意得t1,t2是方程20t﹣5t2=m 的兩個(gè)不相等的實(shí)數(shù)根,
∴b2﹣4ac=202﹣20m>0, ∴m<20, 故m的取值范圍是0≤m<20.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD為△ABC的高,BE為△ABC的角平分線,若∠EBA=32°,∠AEB=70°.
(1)求∠CAD的度數(shù);
(2)若點(diǎn)F為線段BC上任意一點(diǎn),當(dāng)△EFC為直角三角形時(shí),則∠BEF的度數(shù)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,EF∥AB,∠DCB=65°,∠CBF=15°,∠EFB=130°.
(1)直線CD與AB平行嗎?為什么?
(2)若∠CEF=68°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“十一”黃金周期間,某動(dòng)物園在天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù))
日期 | 10月1日 | 10月2日 | 10月3日 | 10月4日 | 10月5日 | 10月6日 | 10月7日 |
人數(shù)變化 (單位:萬(wàn)人) | +1.6 | +0.8 | +0.4 | -0.4 | -0.8 | +0.2 | -1.2 |
(1)若月日的游客人數(shù)記為萬(wàn)人,請(qǐng)用含的代數(shù)式表示月日的游客人數(shù),并直接寫出七天內(nèi)游客人數(shù)最多的是哪一天?
(2)若月日的游客人數(shù)為萬(wàn)人,門票每人元,問黃金周期間該動(dòng)物園門票總收入是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列條件中,不能確定ABC 是直角三角形的條件是( )
A.A B=CB.A 2B 3C
C.A B CD.A 2B 2C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下表:
我們把表格中字母的和所得的多項(xiàng)式稱為"'特征多項(xiàng)式",例如:第1格的“特征多項(xiàng)式”為 4x+y,第 2 格的“特征多項(xiàng)式”為 8x+4y, 回答下列問題:
(1)第 3 格的“特征多項(xiàng)式”為 第 4 格的“待征多項(xiàng)式”為 , 第 n 格的“特征多項(xiàng)式”為 .
(2)若第 m 格的“特征多項(xiàng)式”與多項(xiàng)式-24x+2y-5 的和不含有 x 項(xiàng),求此“特征多項(xiàng)式”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),△ABC的邊BC在x軸上,A,C兩點(diǎn)的坐標(biāo)分別為A(0,m),C(n,0),B(﹣5,0),且(n﹣3)2+ =0.一動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2單位長(zhǎng)度的速度沿射線BO勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.
(1)求A,C兩點(diǎn)的坐標(biāo);
(2)連接PA,若△PAB為等腰三角形,求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P在線段BO上運(yùn)動(dòng)時(shí),在y軸上是否存在點(diǎn)Q,使△POQ與△AOC全等?若存在,請(qǐng)求出t的值并直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對(duì)折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,過CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于切點(diǎn)為G,連接AG交CD于K.
(1)求證:KE=GE;
(2)若KG2=KDGE,試判斷AC與EF的位置關(guān)系,并說明理由;
(3)在(2)的條件下,若sinE=,AK=,求FG的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com