【題目】如圖所示,∠AGF=∠ABC,∠1+2180°

(1)試判斷BFDE的位置關(guān)系?并說明理由;

(2)如果,DEAC,∠2150°,求∠AFG的度數(shù).

【答案】(1)BFDE;(2)AFG60°.

【解析】

1)已知∠AGF=∠ABC,根據(jù)同位角相等,兩直線平行得到FGBC,再由兩直線平行,內(nèi)錯(cuò)角相等證得∠1=∠FBD;由∠1+2180°可得∠2+FBD180°,根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行即可證得BFDE;(2)由∠1+2180°,∠2150°可求得∠130°,根據(jù)垂直定義可得∠DEF90°;再根據(jù)平行線的性質(zhì)可得∠BFA=∠DEF90°,由此即可求得∠AFG的度數(shù).

解:

1BFDE,

理由如下:∵∠AGF=∠ABC(已知)

FGBC(同位角相等,兩直線平行)

∴∠1=∠FBD(兩直線平行,內(nèi)錯(cuò)角相等)

又∵∠1+2180°(已知)

∴∠2+FBD180°(等量代換)

BFDE(同旁內(nèi)角互補(bǔ)兩直線平行)

2)∵∠1+2180°,∠2150°(已知)

∴∠130°

DEAC(已知)

∴∠DEF90°(垂直定義)

BFDE(已證)

∴∠BFA=∠DEF90°(兩直線平行,同位角相等)

∴∠AFG90°30°60°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠ACB=90°,CD⊥ABDAE平分∠CABCDF,CH⊥EFH,連接DH,求證:(1)EH=FH;

(2)∠CAB=2∠CDH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中,每個(gè)小正方形的邊長均為1個(gè)單位長度有一個(gè)△ABC,它的三個(gè)頂點(diǎn)均與小正方形的頂點(diǎn)重合.

1)將△ABC向右平移3個(gè)單位長度,得到△DEFAD、BECF對應(yīng)),請?jiān)诜礁窦堉挟嫵觥?/span>DEF

2)在(1)的條件下,連接AECE,請直接寫出△ACE的面積S,并判斷B是否在邊AE上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣,為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的漢字聽寫大賽為了解本次大賽的成績,校團(tuán)委隨機(jī)抽取了其中若干名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:

成績

頻數(shù)

頻率

10

 

30

 

40

n

 

m

 

50

a

1

請根據(jù)所給信息,解答下列問題:

______,______,______;

補(bǔ)全頻數(shù)直方圖;

這若干名學(xué)生成績的中位數(shù)會(huì)落在______分?jǐn)?shù)段;

若成績在90分以上包括90的為優(yōu)等,請你估計(jì)該校參加本次比賽的3000名學(xué)生中成績是優(yōu)等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)新知:如圖 1、圖 2是矩形所在平面內(nèi)任意一點(diǎn),則有以下重要結(jié)論: .該結(jié)論的證明不難,同學(xué)們通過勾股定理即可證明.

應(yīng)用新知:如圖 3,在中,, 內(nèi)一點(diǎn),且,,則的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一次射擊訓(xùn)練中甲、乙兩人的10次射擊成績的分布情況,則射擊成績的方差較小的是_____(填“甲”或“乙”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列條件能判定ABC≌△DEF的是(  )

A. AB=DE AC=DF B=EB. AB=DE AC=DF C=F

C. AB=DE AC=DF A=DD. AB=DE AC=DF B=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°到正方形AB′C′D′,則圖中陰影部分的面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程mx2(m+2)x2=0m≠0

(1)求證:方程一定有兩個(gè)實(shí)數(shù)根;

(2)若此方程的兩根為不相等的整數(shù),求整數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案