【題目】如圖1,將一圓形紙片向右、向上兩次對折后得到如圖2所示的扇形AOB.已知OA=6,取OA的中點C,過點C作CD⊥OA交 于點D,點F是 上一點.若將扇形BOD沿OD翻折,點B恰好與點F重合,用剪刀沿著線段BD,DF,F(xiàn)A依次剪下,則剪下的紙片(形狀同陰影圖形)面積之和為

【答案】36π﹣108
【解析】解:如圖,∵CD⊥OA, ∴∠DCO=∠AOB=90°,
∵OA=OD=OB=6,OC= OA= OD,
∴∠ODC=∠BOD=30°,
作DE⊥OB于點E,

則DE= OD=3,
∴S弓形BD=S扇形BOD﹣SBOD= ×6×3=3π﹣9,
則剪下的紙片面積之和為12×(3π﹣9)=36π﹣108,
所以答案是:36π﹣108.
【考點精析】本題主要考查了扇形面積計算公式的相關(guān)知識點,需要掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+x﹣6與x軸兩個交點分別是A、B(點A在點B的左側(cè)).
(1)求A、B的坐標(biāo);
(2)利用函數(shù)圖象,寫出y<0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,過點A(﹣ ,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個根

(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點D在直線AC上,且DB=DC,求直線BD的解析式;
(4)在x軸上是否存在P,使以O(shè)、B、P三點為頂點的三角形與△ABC相似?若存在,請直接寫出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點B(1,4)和點E(3,0)兩點.

(1)求拋物線的解析式;
(2)若點D在線段OC上,且BD⊥DE,BD=DE,求D點的坐標(biāo);
(3)在條件(2)下,在拋物線的對稱軸上找一點M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時點M的坐標(biāo);
(4)在條件(2)下,從B點到E點這段拋物線的圖象上,是否存在一個點P,使得△PAD的面積最大?若存在,請求出△PAD面積的最大值及此時P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB是⊙O的直徑,∠DAB=22.5°,延長AB到點C,使得∠ACD=45°.
(1)求證:CD是⊙O的切線;
(2)若AB=2 ,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)如圖1,△ABC為等邊三角形,現(xiàn)將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于30°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點D,在三角板斜邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=30°,連接AF,EF.

①求∠EAF的度數(shù);
②DE與EF相等嗎?請說明理由;
(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于45°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點D,在三角板另一直角邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=45°,連接AF,EF,請直接寫出探究結(jié)果:
①求∠EAF的度數(shù);
②線段AE,ED,DB之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù)f(x),當(dāng)x≤3時,f(x)=x2﹣2x,當(dāng)x>3時,f(x)=x2﹣10x+24,若方程f(x)=2x+m有且只有兩個實數(shù)解,則m的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一牧童在 A 處牧馬,牧童的家在 B 處,A,B 處距河岸的距離分別是 AC=500 m,BD=700 m, C,D 兩地間的距離也為 500 m,天黑前牧童從點 A 將馬牽到河邊 去飲水,再趕回家,為了使所走的路程最短.

(1)牧童應(yīng)將馬趕到河邊的什么地點?請你在圖中畫出來.

(2)問:他至少要走多少路?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為保障我國海外維和部隊官兵的生活,現(xiàn)需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口的費用(元/噸)如表所示:

港口

運費(元/臺)

甲庫

乙?guī)?/span>

A港

14

20

B港

10

8


(1)設(shè)從甲倉庫運送到A港口的物資為x噸,求總運費y(元)與x(噸)之間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求出最低費用,并說明費用最低時的調(diào)配方案.

查看答案和解析>>

同步練習(xí)冊答案