【題目】如圖,平行四邊形中,平分,交于點(diǎn),且,延長(zhǎng)的延長(zhǎng)線交于點(diǎn),連接,.下列結(jié)論:①;②是等邊三角形;③;④;⑤中正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

由平行四邊形的性質(zhì)得出ADBC,AD=BC,由AE平分∠BAD,可得∠BAE=DAE,可得∠BAE=BEA,得AB=BE,由AB=AE,得到△ABE是等邊三角形,②正確;則∠ABE=EAD=60°,由SAS證明△ABC≌△EAD,①正確;由△FCD與△ABD等底(AB=CD)等高(ABCD間的距離相等),得出SFCD=SABD,由△AEC與△DEC同底等高,所以SAEC=SDEC,得出SABE=SCEF,⑤正確.

解:∵四邊形ABCD是平行四邊形,
ADBCAD=BC,
∴∠EAD=AEB,
又∵AE平分∠BAD,
∴∠BAE=DAE,
∴∠BAE=BEA,
AB=BE,
AB=AE,
∴△ABE是等邊三角形;
②正確;
∴∠ABE=EAD=60°,
AB=AE,BC=AD,

在△ABC和△EAD中,

,
∴△ABC≌△EADSAS);
①正確;
∵△FCD與△ABC等底(AB=CD)等高(ABCD間的距離相等),
SFCD=SABC,
又∵△AEC與△DEC同底等高,
SAEC=SDEC,
SABE=SCEF
⑤正確;
ADAF相等,即∠AFD=ADF=DEC,
EC=CD=BE,
BC=2CD,
題中未限定這一條件,
∴③④不一定正確;
故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過(guò)點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1,給出四個(gè)結(jié)論:
①c>0;
②若點(diǎn)B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2;
③2a﹣b=0;
<0,
其中,正確結(jié)論的個(gè)數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:把形如的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆寫,即.例如:的一種形式的配方;所以,,,的三種不同形式的配方(即余項(xiàng)分別是常數(shù)項(xiàng)、一次項(xiàng)、二次項(xiàng)).

請(qǐng)根據(jù)閱讀材料解決下列問(wèn)題:

1)比照上面的例子,寫出三種不同形式的配方;

2)已知,求的值;

3)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC=6,ACB90°,ABC的平分線交AC于點(diǎn)D,EAB上一點(diǎn),且BE=BCCFEDBD于點(diǎn)F,連接EF,ED.

1)求證:四邊形CDEF是菱形.

2)當(dāng)∠ACB 度時(shí),四邊形CDEF是正方形,請(qǐng)給予證明;并求此時(shí)正方形的邊長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人到一家快遞公司辦理環(huán)江香米(簡(jiǎn)稱香米)的快遞托運(yùn),重量為千克.快遞公司收取托運(yùn)費(fèi)方案如下:

凡物品重量不超過(guò)10千克的,按2/千克收取托運(yùn)費(fèi);當(dāng)物品重量超過(guò)10千克的,超出部分按3/千克加收托運(yùn)費(fèi).

1)寫出千克香米的托運(yùn)費(fèi)的表達(dá)式 (用含字母的式子表示);

2)若托運(yùn)香米重量為千克時(shí),求出這筆托運(yùn)費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有個(gè)填寫運(yùn)算符號(hào)的游戲:在“ 1397” 中的每個(gè)□內(nèi),填入,,,中的某一個(gè)(可重復(fù)使用),然后計(jì)算結(jié)果.

1)計(jì)算:

2)若13×97= -4,請(qǐng)推算□內(nèi)的符號(hào);

3)在“139-7”的□內(nèi)填入符號(hào)后,使計(jì)算所得數(shù)最小,直接寫出這個(gè)最小數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教育部明確要求中小學(xué)生每天要有2小時(shí)體育鍛煉,周末朱諾和哥哥在米的環(huán)形跑道上騎車鍛煉,他們?cè)谕坏攸c(diǎn)沿著同一方向同時(shí)出發(fā),騎行結(jié)束后兩人有如下對(duì)話:

朱諾:你要分鐘才能第一次追上我.

哥哥:我騎完一圈的時(shí)候,你才騎了半圈!

1)請(qǐng)根據(jù)他們的對(duì)話內(nèi)容,求出朱諾和哥哥的騎行速度(速度單位:米/秒);

2)哥哥第一次追上朱諾后,在第二次相遇前,再經(jīng)過(guò)多少秒,朱諾和哥哥相距?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知一次函數(shù)y=ax+2與x軸、y軸分別交于點(diǎn)A,B,反比例函數(shù)y= 經(jīng)過(guò)點(diǎn)M.

(1)若M是線段AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合).當(dāng)a=﹣3時(shí),設(shè)點(diǎn)M的橫坐標(biāo)為m,求k與m之間的函數(shù)關(guān)系式.
(2)當(dāng)一次函數(shù)y=ax+2的圖象與反比例函數(shù)y= 的圖象有唯一公共點(diǎn)M,且OM= ,求a的值.
(3)當(dāng)a=﹣2時(shí),將Rt△AOB在第一象限內(nèi)沿直線y=x平移 個(gè)單位長(zhǎng)度得到Rt△A′O′B′,如圖2,M是Rt△A′O′B′斜邊上的一個(gè)動(dòng)點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】你能求(x1)(x99+x98+x97++x+1)的值嗎?

遇到這樣的問(wèn)題,我們可以先思考一下,從簡(jiǎn)單的情形人手,分別計(jì)算下列各式的值.

1)(x1)(x+1 =_____________

2)(x1)( x2+x+1 =_____________;

3)(x1)(x3+ x2+x+1 =____________

由此我們可以得到:

4)(x1)( x99+x98+x97++x+1 =___________,

請(qǐng)你利用上面的結(jié)論,完成下列的計(jì)算:

5299+298+297++2+1;

查看答案和解析>>

同步練習(xí)冊(cè)答案