【題目】如圖1,已知△ABC,求證:∠A+∠B+∠C=180°.

通過畫平行線,將∠A、∠B、∠C作等角代換,使各角之和恰為一平角,依輔助線不同而得多種證法.

證法1:如圖1,延長BCD,過CCE∥BA.

∵BA∥CE(作圖2所知),

∴∠B=∠1,∠A=∠2(兩直線平行,同位角、內(nèi)錯角相等).

∵∠BCD=∠BCA+∠2+∠1=180°(平角的定義),

∴∠A+∠B+∠ACB=180°(等量代換).

如圖3,過BC上任一點F,畫FH∥AC,F(xiàn)G∥AB,這種添加輔助線的方法能證明∠A+∠B+∠C=180°嗎?請你試一試.

【答案】證明見解析

【解析】

根據(jù)平行線性質(zhì)得出∠1=C,3=B,2+AGF=180°,A+AGF=180°,推出∠2=A,即可得出答案.

如圖3,

HFAC,

∴∠1=C,

GFAB,

∴∠B=3,

HFAC,

∴∠2+AGF=180°,

GFAH,

∴∠A+AGF=180°,

∴∠2=A,

∴∠A+B+C=1+2+3=180°(等量代換).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理與黃金分割是幾何中的雙寶,前者好比黃金,后者堪稱珠玉.生活中到處可見黃金分割的美.如圖,線段AB=1,點P1是線段AB的黃金分割點(AP1<BP1),點P2是線段AP1的黃金分割點(AP2<P1P2),點P3是線段AP2的黃金分割點(AP3<P2P3),…,依此類推,則APn的長度是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=15,AC=13,高AD=12,則BC的長是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD,D=100°,AC平分BCD,ACB=40°,BAC=70°.

(1)ADBC平行嗎?試寫出推理過程;

(2)DACEAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三角形和正方形的面積分別為10,6,兩陰影部分的面積分別為a,b(a>b),則(a﹣b)等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BC=8,tanB= ,點D在BC上,且BD=AD,求AC的長和cos∠ADC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班級從甲乙兩位同學(xué)中選派一人參加“秀美山河”知識競賽,老師對他們的五次模擬成績(單位:分)進行了整理,美工計算出甲成績的平均數(shù)是80,甲乙成績的方差分別是320,40,但繪制的統(tǒng)計圖尚不完整.
甲乙兩人模擬成績統(tǒng)計表

根據(jù)以上信息,請你解答下列問題:
(1)a=;
(2)請完成圖中表示甲成績變化情況的折線;
(3)求乙成績的平均數(shù);
(4)從平均數(shù)和方差的角度分析,誰將被選中.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在數(shù)軸上點表示數(shù),點表示數(shù),且滿足

表示的數(shù)為________;點表示的數(shù)為________.

若點與點之間的距離表示為,點與點之間的距離表示為,請在數(shù)軸上找一點,使,則點表示的數(shù)________.

若在原點處放一擋板,一小球甲從點處以個單位/秒的速度向左運動;同時另一小球乙從點處以個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設(shè)運動的時間為(秒),請分別表示出甲、乙兩小球到原點的距離(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小梅將邊長分別為,,,長的若干個正方形按一定規(guī)律拼成不同的長方形,如圖所示.

求第四個長方形的周長;

時,求第五個長方形的面積.(用科學(xué)記數(shù)法表示)

查看答案和解析>>

同步練習(xí)冊答案