【題目】下列說(shuō)法正確的是( )
A.“概率為0.0001的事件”是不可能事件
B.任意擲一枚質(zhì)地均勻的硬幣10次,正面向上的一定是5次
C.“任意畫(huà)出一個(gè)等邊三角形,它是軸對(duì)稱(chēng)圖形”是隨機(jī)事件
D.“任意畫(huà)出一個(gè)平行四邊行,它是中心對(duì)稱(chēng)圖形”是必然事件
【答案】D
【解析】
根據(jù)不可能事件、隨機(jī)事件、以及必然事件的定義(即根據(jù)事件發(fā)生的可能性大。┲痦(xiàng)判斷即可.
在一定條件下,不可能發(fā)生的事件叫不可能事件;一定會(huì)發(fā)生的事件叫必然事件;可能發(fā)生也可能不發(fā)生的事件叫隨機(jī)事件
A、“概率為的事件”是隨機(jī)事件,此項(xiàng)錯(cuò)誤
B、任意擲一枚質(zhì)地均勻的硬幣10次,正面向上的不一定是5次,此項(xiàng)錯(cuò)誤
C、“任意畫(huà)出一個(gè)等邊三角形,它是軸對(duì)稱(chēng)圖形”是必然事件,此項(xiàng)錯(cuò)誤
D、“任意畫(huà)出一個(gè)平行四邊行,它是中心對(duì)稱(chēng)圖形”是必然事件,此項(xiàng)正確
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.
(1)請(qǐng)按下列要求畫(huà)圖:
①將△ABC先向右平移5個(gè)單位,再向上平移1個(gè)單位,得到△A1B1C1,畫(huà)出△A1B1C1;
②△A2B2C2與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng),畫(huà)出△A2B2C2;
(2)若(1)所得的△A1B1C1與△A2B2C2,關(guān)于點(diǎn)P成中心對(duì)稱(chēng),直接寫(xiě)出對(duì)稱(chēng)中心P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)我市大力發(fā)展綠色交通,構(gòu)建公共、綠色交通體系,將“共享單車(chē)”陸續(xù)放置在人口流量較大的地方,琪琪同學(xué)隨機(jī)調(diào)查了若干市民租用“共享單車(chē)”的騎車(chē)時(shí)間(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計(jì)圖(),根據(jù)圖中信息,解答下列問(wèn)題:
(1)這項(xiàng)被調(diào)查的總?cè)藬?shù)是 人,表示組的扇形統(tǒng)計(jì)圖的圓心角的度數(shù)為 .
(2)若某小區(qū)共有人,根據(jù)調(diào)查結(jié)果,估計(jì)租用“共享單車(chē)”的騎車(chē)時(shí)間為的大約有多少人?
(3)如果琪琪同學(xué)想從組的甲、乙、丙、丁四人中隨機(jī)選擇兩人了解平時(shí)租用“共享單車(chē)”的騎車(chē)時(shí)間情況,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求出恰好選中甲的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有這樣一道習(xí)題:如圖1,已知OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長(zhǎng)線交⊙O于Q,過(guò)Q點(diǎn)作⊙O的切線交OA的延長(zhǎng)線于R.
(1)證明:RP=RQ;
(2)請(qǐng)?zhí)骄肯铝凶兓?/span>
A、變化一:交換題設(shè)與結(jié)論.已知:如圖1,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn)(不與O、A重合),BP的延長(zhǎng)線交⊙O于Q,R是OA的延長(zhǎng)線上一點(diǎn),且RP=RQ.證明:RQ為⊙O的切線.
B、變化二:運(yùn)動(dòng)探求. ①如圖2,若OA向上平移,變化一中結(jié)論還成立嗎?(只交待判斷) 答:_________.
②如圖3,如果P在OA的延長(zhǎng)線上時(shí),BP交⊙O于Q,過(guò)點(diǎn)Q作⊙O的切線交OA的延長(zhǎng)線于R,原題中的結(jié)論還成立嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=x+2與反比例函數(shù)y2=的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(1,a).
(1)求出k的值及點(diǎn)B的坐標(biāo);
(2)根據(jù)圖象,寫(xiě)出y1>y2時(shí)x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)分別交y軸、x 軸于A、B兩點(diǎn),拋物線過(guò)A、B兩點(diǎn)。(1)求這個(gè)拋物線的解析式;(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N。求當(dāng)t 取何值時(shí),MN有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形,定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱(chēng)這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為______;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,則CD將△ABC分割成2個(gè)與它自己相似的小直角三角形.則△ACD與△ABC的相似比為_____;則△BCD與△ABC的相似比為_____;
(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長(zhǎng)AD=a,寬AB=b(a>b).
①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a=_____(用含b的式子表示):
②如圖3﹣2,若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a=______(用含n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=-x2+mx的對(duì)稱(chēng)軸為直線x=2,若關(guān)于x的-元二次方程-x2+mx-t=0 (t為實(shí)數(shù))在l<x<3的范圍內(nèi)有解,則t的取值范圍是( )
A.-5<t≤4 B.3<t≤4 C.-5<t<3 D.t>-5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BA=BE,∠A=∠E,∠ABE=∠CBD,ED交BC于點(diǎn)F,且∠FBD=∠D.
求證:AC∥BD.
證明:∵∠ABE=∠CBD(已知),
∴∠ABE+∠EBC=∠CBD+∠EBC( )
即∠ABC=∠EBD
在△ABC和△EBD中,
,
∴△ABC≌△EBD( ),
∴∠C=∠D( )
∵∠FBD=∠D,
∴∠C= (等量代換),
∴AC∥BD( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com