【題目】如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.

(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.

①在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時,求α的度數(shù);
②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.

【答案】
(1)

解:如圖1,延長ED交AG于點H,

∵點O是正方形ABCD兩對角線的交點,

∴OA=OD,OA⊥OD,

∵OG=OE,

在△AOG和△DOE中,

,

∴△AOG≌△DOE,

∴∠AGO=∠DEO,

∵∠AGO+∠GAO=90°,

∴∠GAO+∠DEO=90°,

∴∠AHE=90°,

即DE⊥AG;


(2)

解:①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:

(Ⅰ)α由0°增大到90°過程中,當(dāng)∠OAG′=90°時,

∵OA=OD= OG= OG′,

∴在Rt△OAG′中,sin∠AG′O= =

∴∠AG′O=30°,

∵OA⊥OD,OA⊥AG′,

∴OD∥AG′,

∴∠DOG′=∠AG′O=30°,

即α=30°;

(Ⅱ)α由90°增大到180°過程中,當(dāng)∠OAG′=90°時,

同理可求∠BOG′=30°,

∴α=180°﹣30°=150°.

綜上所述,當(dāng)∠OAG′=90°時,α=30°或150°.

②如圖3,當(dāng)旋轉(zhuǎn)到A、O、F′在一條直線上時,AF′的長最大,

∵正方形ABCD的邊長為1,

∴OA=OD=OC=OB= ,

∵OG=2OD,

∴OG′=OG= ,

∴OF′=2,

∴AF′=AO+OF′= +2,

∵∠COE′=45°,

∴此時α=315°.


【解析】(1)延長ED交AG于點H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運用等量代換證明∠AHE=90°即可;(2)①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當(dāng)∠OAG′=90°時,α=30°,α由90°增大到180°過程中,當(dāng)∠OAG′=90°時,α=150°;②當(dāng)旋轉(zhuǎn)到A、O、F′在一條直線上時,AF′的長最大,AF′=AO+OF′= +2,此時α=315°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某縣政府為了迎接“八一”建軍節(jié),加強軍民共建活動,計劃從花園里拿出1430盆甲種花卉和1220盆乙種花卉,搭配成A、B兩種園藝造型共20個,在城區(qū)內(nèi)擺放,以增加節(jié)日氣氛,已知搭配A、B兩種園藝造型各需甲、乙兩種花卉數(shù)如表所示:(單位:盆)
(1)某校某年級一班課外活動小組承接了這個園藝造型搭配方案的設(shè)計,問符合題意的搭配方案有幾種?請你幫忙設(shè)計出來.
(2)如果搭配及擺放一個A造型需要的人力是8人次,搭配及擺放一個B造型需要的人力是11人次,哪種方案使用人力的總?cè)舜螖?shù)最少,請說明理由.

造型
數(shù)量

A

B

甲種

80

50

乙種

40

90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足是G,F(xiàn)是CG的中點,延長AF交⊙O于E,CF=2,AF=3,則EF的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A(0,4),C(2,0).將矩形OABC繞點O按順時針方向旋轉(zhuǎn)135°,得到矩形EFGH(點E與O重合).

(1)若GH交y軸于點M,則∠FOM=°,OM=;
(2)將矩形EFGH沿y軸向上平移t個單位.
①直線GH與x軸交于點D,若AD∥BO,求t的值;
②若矩形EFGH與矩形OABC重疊部分的面積為S個平方單位,試求當(dāng)0<t≤4 ﹣2時,S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的不斷發(fā)展,人與人的溝通方式也發(fā)生了很大的變化,盤錦市某中學(xué)九年級的一個數(shù)學(xué)興趣小組在本年級學(xué)生中進行“學(xué)生最常用的交流方式”的專題調(diào)查活動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為四類:A.面對面交談;B.微信和QQ等聊天軟件交流;C.短信與書信交流;D.電話交流.根據(jù)調(diào)查數(shù)據(jù)結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖:
(1)本次調(diào)查,一共調(diào)查了名同學(xué),其中C類女生有名,D類男生有名;
(2)若該年級有學(xué)生150名,請根據(jù)調(diào)查結(jié)果估計這些學(xué)生中以“D.電話交流”為最常用的交流方式的人數(shù)約為多少?
(3)在本次調(diào)查中以“C.短信與書信交流”為最常用交流方式的幾位同學(xué)中隨機抽取兩名同學(xué)參加盤錦市中學(xué)生書信節(jié)比賽,請用列舉法求所抽取的兩名同學(xué)都是男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的正方形MNEF的四個頂點分在大圓O上,小圓O與正方形各邊都相切,AB與CD是大圓O的直徑,AB⊥CD,CD⊥MN,小明隨意向水平放置的該圓形區(qū)域內(nèi)拋一個小球,則小球停在該圖中陰影部分區(qū)域的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABCD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)求線段AB所表示的y1與x之間的函數(shù)表達式.
(2)當(dāng)該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB是⊙O的直徑,AC與⊙O交于點D,點E在弧BD上,連接DE,AE,連接CE并延長交AB于點F,∠AED=∠ACF.

(1)求證:CF⊥AB;
(2)若CD=4,CB=4 ,cos∠ACF= ,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框(形狀不限),不計螺絲大小,其中相鄰兩螺絲的距離依次為3、4、5、7,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則任意兩個螺絲間的距離的最大值為(

A.6
B.7
C.8
D.9

查看答案和解析>>

同步練習(xí)冊答案