【題目】設(shè)拋物線(xiàn)的解析式為y=ax2 , 過(guò)點(diǎn)B1(1,0)作x軸的垂線(xiàn),交拋物線(xiàn)于點(diǎn)A1(1,2);過(guò)點(diǎn)B2 ,0)作x軸的垂線(xiàn),交拋物線(xiàn)于點(diǎn)A2;…;過(guò)點(diǎn)Bn(( n﹣1 , 0)(n為正整數(shù))作x軸的垂線(xiàn),交拋物線(xiàn)于點(diǎn)An , 連接AnBn+1 , 得Rt△AnBnBn+1
(1)求a的值;
(2)直接寫(xiě)出線(xiàn)段AnBn , BnBn+1的長(zhǎng)(用含n的式子表示);
(3)在系列Rt△AnBnBn+1中,探究下列問(wèn)題:
①當(dāng)n為何值時(shí),Rt△AnBnBn+1是等腰直角三角形?
②設(shè)1≤k<m≤n(k,m均為正整數(shù)),問(wèn):是否存在Rt△AkBkBk+1與Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,說(shuō)明理由.

【答案】
(1)

解:如圖1所示,

∵點(diǎn)A1(1,2)在拋物線(xiàn)的解析式為y=ax2上,

∴a=2


(2)

解:如圖2所示,

AnBn=2x2=2×[( n﹣1]2= ,BnBn+1=


(3)

解:如圖3所示,

由Rt△AnBnBn+1是等腰直角三角形得AnBn=BnBn+1,則: =

2n﹣3=n,n=3,

∴當(dāng)n=3時(shí),Rt△AnBnBn+1是等腰直角三角形,

②依題意得,∠AkBkBk+1=∠AmBmBm+1=90°,

有兩種情況:i)當(dāng)Rt△AkBkBk+1∽R(shí)t△AmBmBm+1時(shí),

= , = = ,

所以,k=m(舍去),

ii)當(dāng)Rt△AkBkBk+1∽R(shí)t△Bm+1BmAm時(shí),

= = , = ,

∴k+m=6,

∵1≤k<m≤n(k,m均為正整數(shù)),

∴取 ;

當(dāng) 時(shí),Rt△A1B1B2∽R(shí)t△B6B5A5,

相似比為: = =64,

當(dāng) 時(shí),Rt△A2B2B3∽R(shí)t△B5B4A4,

相似比為: = =8,

所以:存在Rt△AkBkBk+1與Rt△AmBmBm+1相似,其相似比為64:1或8:1.


【解析】(1)直接把點(diǎn)A1的坐標(biāo)代入y=ax2求出a的值;(2)由題意可知:A1B1是點(diǎn)A1的縱坐標(biāo):則A1B1=2×12=2;A2B2是點(diǎn)A2的縱坐標(biāo):則A2B2=2×( 2= ;…則AnBn=2x2=2×[( n﹣1]2= ;
B1B2=1﹣ = ,B2B3= = = ,…,BnBn+1= ;(3)因?yàn)镽t△AkBkBk+1與Rt△AmBmBm+1是直角三角形,所以分兩種情況討論:根據(jù)(2)的結(jié)論代入所得的對(duì)應(yīng)邊的比列式,計(jì)算求出k與m的關(guān)系,并與1≤k<m≤n(k,m均為正整數(shù))相結(jié)合,得出兩種符合條件的值,分別代入兩相似直角三角形計(jì)算相似比.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=ECD=90°,DAB邊上一點(diǎn).

(1)求證:△ACE≌△BCD;

(2)AD=5,BD=12,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為60°,在斜坡上的點(diǎn)D處測(cè)得樓頂B的仰角為45°,其中點(diǎn)A、C、E在同一直線(xiàn)上.

(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半圓O的直徑AB=4,以長(zhǎng)為2的弦PQ為直徑,向點(diǎn)O方向作半圓M,其中P點(diǎn)在 上且不與A點(diǎn)重合,但Q點(diǎn)可與B點(diǎn)重合.
發(fā)現(xiàn): 的長(zhǎng)與 的長(zhǎng)之和為定值l,求l:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(
A.擲一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動(dòng)后,5點(diǎn)朝上是必然事件
B.審查書(shū)稿中有哪些學(xué)科性錯(cuò)誤適合用抽樣調(diào)查法
C.甲乙兩人在相同條件下各射擊10次,他們的成績(jī)的平均數(shù)相同,方差分別是S2=0.4,S2=0.6,則甲的射擊成績(jī)較穩(wěn)定
D.擲兩枚質(zhì)地均勻的硬幣,“兩枚硬幣都是正面朝上”這一事件發(fā)生的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正比例函數(shù)與反比例函數(shù)的圖象分別交于,兩點(diǎn),已知點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱(chēng),且點(diǎn)的坐標(biāo)為.其中

(1)四邊形     .(填寫(xiě)四邊形的形狀)

(2)當(dāng)點(diǎn)的坐標(biāo)為時(shí),且四邊形是矩形,求,的值.

(3)試探究:隨著的變化,四邊形能不能成為菱形?若能,請(qǐng)直接寫(xiě)出的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上三點(diǎn)A,OB表示的數(shù)分別為-3,0,1,點(diǎn)P為數(shù)軸上任意一點(diǎn),其表示的數(shù)為x.

(1)如果點(diǎn)P到點(diǎn)A,點(diǎn)B的距離相等,那么x=______;

(2)若點(diǎn)P到點(diǎn)A,點(diǎn)B的距離之和最小,則整數(shù)x是____________ ;

(3)當(dāng)點(diǎn)P到點(diǎn)A,點(diǎn)B的距離之和是6時(shí),求x的值;

(4)若點(diǎn)P以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)O沿著數(shù)軸的負(fù)方向運(yùn)動(dòng)時(shí),點(diǎn)E以每秒1個(gè)單位長(zhǎng)度的速度從點(diǎn)A沿著數(shù)軸的負(fù)方向運(yùn)動(dòng)、點(diǎn)F以每秒4個(gè)單位長(zhǎng)度的速度從點(diǎn)B沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),且三個(gè)點(diǎn)同時(shí)出發(fā),那么運(yùn)動(dòng)多少秒時(shí),點(diǎn)P到點(diǎn)E,點(diǎn)F的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=ax﹣a與y= (a≠0)在同一直角坐標(biāo)系中的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案