【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點A在第一象限,點BC的坐標(biāo)分別為(2,1),(6,1),BAC=90°,AB=AC,直線ABy軸于點P,若ABCABC關(guān)于點P成中心對稱,則點A的坐標(biāo)為( 。

A. (﹣4,﹣5) B. (﹣5,﹣4) C. (﹣3,﹣4) D. (﹣4,﹣3)

【答案】A

【解析】先求得直線AB解析式為y=x-1,即可得出P(0,-1),再根據(jù)點A與點A'關(guān)于點P成中心對稱,利用中點公式,即可得到點A′的坐標(biāo).

∵點B,C的坐標(biāo)分別為(2,1),(6,1),BAC=90°,AB=AC,

∴△ABC是等腰直角三角形,

A(4,3),

設(shè)直線AB解析式為y=kx+b,則 ,

解得

∴直線AB解析式為y=x-1,

x=0,則y=-1,

P(0,-1),

又∵點A與點A'關(guān)于點P成中心對稱,

∴點PAA'的中點,

設(shè)A'(m,n),則=0,=-1,

m=-4,n=-5,

A'(-4,-5),

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,ABC是等邊三角形,AE=CD,BQADQ,BEAD于點P,下列說法:①∠APE=C,AQ=BQ,BP=2PQ,AE+BD=AB,其中正確的個數(shù)有( )個。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中.

利用尺規(guī)作圖,在BC邊上求作一點P,使得點PAB的距離的長等于PC的長;

利用尺規(guī)作圖,作出中的線段PD.

要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在x軸的正半軸上,點B在反比例函數(shù)y=(k>0,x>0)的圖象上,延長AB交該函數(shù)圖象于另一點C,BC=3AB,點D也在該函數(shù)的圖象上,BD=BC,以BC,BD為邊構(gòu)造CBDE,若點O,B,E在同一條直線上,且CBDE的周長為k,則AB的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn)

小明在學(xué)習(xí)魯教版八年級上冊97頁例4,受到啟發(fā)進行如下數(shù)學(xué)實驗操作:

如圖1,取一個銳角為45°的三角尺,把銳角頂點放在正方形ABCD的頂點D處,將三角尺繞點D旋轉(zhuǎn)一個角度,使三角尺的直角邊與斜邊分別交邊AB,BC于點E和點F,連接FE,在繞點D旋轉(zhuǎn)過程中,發(fā)現(xiàn)線段AE,EF,CF滿足EF=AE+CF的數(shù)量關(guān)系,但是不會進行證明,數(shù)學(xué)張老師給他如下的提示:ADE繞點D逆時針旋轉(zhuǎn)90°DCE’的位置,小明畫旋轉(zhuǎn)后的圖形,利用全等的知識證明了出來.你根據(jù)上面的提示畫出旋轉(zhuǎn)后的圖形,并將上面的結(jié)論進行證明.

問題探究

小明的探究引發(fā)了老師的興趣,老師將三角尺繞點D旋轉(zhuǎn)到如圖2的位置,三角尺的直角邊與斜邊分別交邊AB,BC的延長線于點E和點F,老師問題小明此時AE,EF,CF滿足什么數(shù)量關(guān)系,小明思考后說出了正確的結(jié)論.請同學(xué)們直接寫出正確結(jié)論(不用寫出證明過程).

拓展延伸

張老師讓小明利用上面探究積累的學(xué)習(xí)經(jīng)驗,解答下面的問題:

如圖3已知正方形ABCD,E在邊AB,F在邊BC,且∠EDF=45°,CD=6,AE=2,CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一農(nóng)民帶上若干千克自產(chǎn)的土豆進城出售,為了方便,他帶了一些零錢備用,按市場價售出一些后,又降價出售,售出的土豆千克數(shù)x與他手中持有的錢數(shù)(含備用零錢)y的關(guān)系,如圖所示,結(jié)合圖象回答下列問題:

(1)農(nóng)民自帶的零錢是多少?

(2)試求降價前yx之間的關(guān)系式;

(3)由表達式你能求出降價前每千克的土豆價格是多少?

(4)降價后他按每千克1.6元將剩余土豆售完,這時他手中的錢(含備用零錢)86元,試問他一共帶了多少千克土豆?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點GBC邊上任意一點,DEAG于點E,BFDE且交AG于點F.

(1)如圖1,求證:AE=BF;

(2)連接DF,若tanBAG=,AB=2,求△ADF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某書店老板去圖書批發(fā)市場購買某種圖書.第一次用元購書若干本,并按該書定價元出售,很快售完.由于該書暢銷,第二次購書時,每本書的批發(fā)價已比第一次提高了,他用元所購該書數(shù)量比第一次多本.

1)求兩次購書的價格分別是多少?

2)若第二次購書按定價售出本時,出現(xiàn)滯銷,于是決定打折出售剩下這批書,那么該商家最低打幾折才能保證剩下書的利潤率不低于?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為如圖乙再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______

查看答案和解析>>

同步練習(xí)冊答案