【題目】如圖,在直角坐標系中,直線y=kx+1(k≠0)與雙曲線y= (x>0)相交于P(1,m).
(1)求k的值;
(2)若點Q與點P關于y=x成軸對稱,求點Q的坐標為
(3)若過P、Q兩點的拋物線與y軸的交點為N(0, ),求該拋物線的解析式,并求出拋物線的對稱軸方程.

【答案】
(1)解:把P(1,m)代入y= ,得m=2,

∴P(1,2)

把(1,2)代入y=kx+1,得k=1


(2)解:如圖所示:過點P作PA⊥y軸于點A,過點Q作QB⊥x軸于點B,

∵點Q與點P關于y=x成軸對稱,OP=OQ,

∴∠POD=∠DOQ,∠AOD=∠BOD=45°,

∴∠AOP=∠BOQ,

在△APO和△BQO中,

,

∴△APO≌△BQO(AAS),

∴AO=OB=2,AP=QB=1,

∴Q點的坐標為:(2,1).


(3)解:設拋物線的解析式為y=ax2+bx+c,得:

,

解得

故拋物線解析式為:y=﹣ x2+x+ ,

則對稱軸方程為x=﹣ =


【解析】(1)直接將P點代入反比例函數(shù)解析式得出m的值,進而把P點代入一次函數(shù)解析式得出答案;(2)利用全等三角形的判定和性質(zhì)得出△APO≌△BQO(AAS),即可得出Q點坐標;(3)直接利用待定系數(shù)法求出二次函數(shù)解析式進而得出答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD四個頂點都在⊙O上,點P是在弧AB上的一點,則∠CPD的度數(shù)是(
A.35°
B.40°
C.45°
D.60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=5,分別以OA、OC所在直線為x軸、y軸,建立平面直角坐標系,D是邊CB上的一個動點(不與C、B重合),反比例函數(shù)y= (k>0)的圖象經(jīng)過點D且與邊BA交于點E,連接DE.
(1)連接OE,若△EOA的面積為3,則k=
(2)是否存在點D,使得點B關于DE的對稱點在OC上?若存在,求出點D的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家規(guī)定“中小學生每天在校體育活動時間不低于1小時(h)”,某市就“你每天在校體育活動時間是多少?”的問題隨機調(diào)查了轄區(qū)內(nèi)300名初中學生.根據(jù)調(diào)查結果繪制成的統(tǒng)計圖(部分)如圖所示,其中分組情況是:A組:t<0.5h;B組:0.5h≤t<1h;C組:1h≤t<1.5h;D組:t≥1.5h.

請根據(jù)上述信息解答下列問題

(1)補全條形統(tǒng)計圖;

(2)某市約有25000名初中學生,請你結合以上數(shù)據(jù)進行

①估計達到國家規(guī)定體育活動時間的人數(shù)是多少?

②如果要估算本市初中生每天在校體育活動時間是多少,你認為選擇眾數(shù)、中位數(shù)和平均數(shù)三個量中的哪個更合適?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(2m﹣1)x+m2=0有兩個實數(shù)根x1和x2
(1)求實數(shù)m的取值范圍;
(2)當 時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2 x﹣9與x軸交于A、B兩點,與y軸交于點C,連接BC、AC.

(1)求AB和OC的長;
(2)點E從點A出發(fā),沿x軸向點B運動(點E與點A、B不重合),過點E作直線l平行BC,交AC于點D.設AE的長為m,△ADE的面積為s,求s關于m的函數(shù)關系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時,求出以點E為圓心,與BC相切的圓的面積(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC平分∠BAD,∠DCA=∠CAD,在CD的延長線上截取DE=DA,連接AE.

(1)求證:AB∥CD;

(2)若AE=5,AC=12,求線段CE的長;

(3)在(2)的條件下,若線段CD上有一點P,使△DPA的面積是△ACD面積的六分之一,求PC長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察如圖所示的長方體.

(1)用符號表示下列兩棱的位置關系:AB___A′B′AA_____AB,D′A_____D′C′,AD______BC.

(2) A′B′BC所在的直線是兩條不相交的直線,它們_____平行線.(填“是”或“不是”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,AD=8cm,AB=6cm.動點E從點C開始沿邊CB向點B以2cm/s的速度運動,動點F從點C同時出發(fā)沿邊CD向點D以1cm/s的速度運動至點D停止.如圖可得到矩形CFHE,設運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關系用圖象表示大致是下圖中的( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案